CMSC 471 Fall 2012

Class #11

Thursday, October 4 Propositional Logic

Kevin Winner, winnerk1@umbc.edu

This class

- HW2 submission details
- Propositional logic
- HW3

Propositional Logic

Chapter 7.4-7.8

Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

3

Propositional Logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ... (atomic sentences)
- Wrapping **parentheses**: (...)
- Sentences are combined by **connectives**:
- \land ...and [conjunction]
- V ...or [disjunction]
- \Rightarrow ...implies [implication / conditional]
- \Leftrightarrow ..is equivalent [biconditional]
- \neg ...not [negation]
- Literal: atomic sentence or negated atomic sentence

Truth Tables II

The five logical connectives:

Р	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	Тпие	False	False	Тгие	True
False	Тгие	Тпие	False	Тпие	Тгие	False
True	False	False	False	Тпие	False	False
True	Тгие	False	Тпие	Тпие	Тгие	Тгие

A complex sentence:

Р	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \implies P$
False	False	False	False	True
False	Тпие	True	False	True
True	False	True	True	True
Тгие	Тпие	True	False	Тгие

Propositional Logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the **semantics** of each propositional symbol:
 - Ho means "It is hot"
 - Hu means "It is humid"
 - R means "It is raining"
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then S v T, S \wedge T, S \rightarrow T, and S \leftrightarrow T are sentences
 - A sentence results from a finite number of applications of the above rules

Examples of PL Sentences

• $(P \land Q) \rightarrow R$

"If it is hot and humid, then it is raining"

• $Q \rightarrow P$

"If it is humid, then it is hot"

• Q

"It is humid."

A better way: Ho = "It is hot" Hu = "It is humid" R = "It is raining"

Some Terms

- The meaning or **semantics** of a sentence determines its **interpretation**.
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its **truth value** (True or False).
- A **model** for a KB is a "possible world" (assignment of truth values to propositional symbols) in which each sentence in the KB is True.

More Terms

- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics are. Example: "It's raining or it's not raining."
- An **inconsistent sentence** or **contradiction** is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."

Two Important Properties for Inference

Soundness: If KB |- Q then KB |= Q

- If Q is derived from a set of sentences KB using a given set of rules of inference, then Q is entailed by KB.
- Hence, inference produces only real entailments, or any sentence that follows deductively from the premises is valid.

Completeness: If KB |= Q then KB |- Q

- If Q is entailed by a set of sentences KB, then Q can be derived from KB using the rules of inference.
- Hence, inference produces all entailments, or all valid sentences can be proved from the premises.

Sound Rules of Inference

• Here are some examples of sound rules of inference

– A rule is sound if its conclusion is true whenever the premise is true

• Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION	
Modus Ponens	$A, A \rightarrow B$	В	
And Introduction	A, B	$A \land B$	
And Elimination	$A \land B$	А	
Double Negation	$\neg \neg A$	А	
Unit Resolution	A∨B, ¬B	А	
Resolution	$\mathbf{A} \lor \mathbf{B}, \neg \mathbf{B} \lor \mathbf{C}$	A v C	

Soundness of Modus Ponens

Α	В	$\mathbf{A} \rightarrow \mathbf{B}$	$OK?$ $(A \land (A \rightarrow B)) \rightarrow B$
True	True	True	
True	False	False	
False	True	True	
False	False	True	

Soundness of the Resolution Inference Rule

$(\alpha \lor \beta) \land (\sim \beta \lor \gamma) \rightarrow (\alpha \lor \gamma)$

α	β	γ	$\alpha \lor \beta$	$\neg\beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тгие	False
False	False	Тпие	False	True	True
False	True	False	Тгие	False	False
<u>False</u>	True	True	True	True	True
True	False	False	True	True	True
True	<u>False</u>	True	True	True	True
True	True	False	Тгие	False	True
True	True	<u>True</u>	True	<u>True</u>	True

Proving Things

- A **proof** is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.
- The last sentence is the **theorem** (also called goal or query) that we want to prove.
- Example for the "weather problem" given above.

1. Hu	Premise	"It is humid"
2. Hu→Ho	Premise	"If it is humid, it is hot"
3. Ho	Modus Ponens(1,2)	"It is hot"
4. (Ho∧Hu)→R	Premise	"If it's hot & humid, it's raining"
5. Ho∧Hu	And Introduction(1,3)	"It is hot and humid"
6. R	Modus Ponens(4,5)	"It is raining"

Proof by Resolution

• If our knowledge base consists only of **clauses** (disjunctions of literals), then we can form a **complete** resolution algorithm using any complete search algorithm combined with the **resolution rule**:

 $A \lor B, \neg B \lor C \rightarrow A \lor C$

- That's great, but what if our knowledge base has more than just clauses?
 - A clause-only KB is said to be in conjunctive normal form (CNF)
 - Any propositional logic KB can be converted to CNF

Converting to CNF

- 1. Eliminate \leftrightarrow by replacing A \leftrightarrow B with (A \rightarrow B) \land (B \rightarrow A)
- 2. Eliminate \rightarrow by replacing A \rightarrow B with \neg A v B
- 3. Move \neg inwards by applying:
 - $\neg(\neg A) = A$
 - $\neg(A \land B) = (\neg A \lor \neg B)$
 - $\neg(A \lor B) = (\neg A \land \neg B)$
- 4. Distribute v over \land whenever possible with:
 - $(A \lor (B \land C)) = ((A \lor B) \land (A \lor C))$

Proof by Resolution

- Given our CNF formatted KB, we can build a sound and complete resolution algorithm
 - Add our query (in the form of a clause) to the KB
 - For each pair of clauses in the KB, apply the resolution rule to both of them
 - Add any derived sentences to the KB
 - If we ever derive the empty clause (which is always false), then the KB is inconsistent, return false
 - If we can no longer derive new sentences via resolution, then the query is consistent, return true

Propositional Logic is a Weak Language

- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of information
- FOL adds relations, variables, and quantifiers, e.g.,
 - "Every elephant is gray": $\forall x (elephant(x) \rightarrow gray(x))$
 - *"There is a white alligator ":* $\exists x (alligator(X) \land white(X))$

The "Hunt the Wumpus" Agent

4

з

2

- Some atomic propositions: S12 = There is a stench in cell (1,2) B34 = There is a breeze in cell (3,4) W13 = The Wumpus is in cell (1,3) V11 = We have visited cell (1,1) OK11 = Cell (1,1) is safe. etc
- Some rules:

 $\begin{array}{l} (\text{R1}) \neg \text{S11} \rightarrow \neg \text{W11} \land \neg \text{W12} \land \neg \text{W21} & 1 \\ (\text{R2}) \neg \text{S21} \rightarrow \neg \text{W11} \land \neg \text{W21} \land \neg \text{W22} \land \neg \text{W31} \\ (\text{R3}) \neg \text{S12} \rightarrow \neg \text{W11} \land \neg \text{W12} \land \neg \text{W22} \land \neg \text{W13} \\ (\text{R4}) \quad \text{S12} \rightarrow \text{W13} \lor \text{W12} \lor \text{W22} \lor \text{W11} \\ \text{etc} \end{array}$

• Note that the lack of variables requires us to give similar rules for each cell

After the Third Move

- We can prove that the Wumpus is in (1,3) using the four rules given.
- See R&N section 7.5

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
^{1,3} w	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
^{1,2} А S ок	2,2 OK	3,2	4,2	
1,1 V ок	^{2,1} B V OK	3,1 P!	4,1	

Proving W13

• Apply MP with ¬S11 and R1:

 $\neg W11 \land \neg W12 \land \neg W21$

- Apply And-Elimination to this, yielding three sentences:
 ¬W11, ¬W12, ¬W21
- Apply MP to ~S21 and R2, then apply And-Elimination: \neg W22, \neg W21, \neg W31
- Apply MP to S12 and R4 to obtain: W13 v W12 v W22 v W11
- Apply Unit Resolution on (W13 v W12 v W22 v W11) and ¬W11: W13 v W12 v W22
- Apply Unit Resolution with (W13 v W12 v W22) and ¬W22: W13 v W12
- Apply UR with (W13 v W12) and \neg W12: W13
- QED

Summary

- The process of deriving new sentences from old one is called **inference**.
 - Sound inference processes derives true conclusions given true premises
 - Complete inference processes derive all true conclusions from a set of premises
- A valid sentence is true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then—given its premise—its consequent can be derived
- Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have regarding the facts
 - Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base engineer more freedom
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 - It has a simple syntax and simple semantics. It suffices to illustrate the process of inference
 - Propositional logic quickly becomes impractical, even for very small worlds