Shell Scripting

The Shell

e The shell is generally considered to be the interface between the user and the
operating system
= Graphical User Interface
= Command Line Interface

A Little History

e Shells in command line interfaces have been programmable in a limited form since
at least the first UNIX shell
e The UNIX shell was completely rewritten in the late 1970s by Steve Bourne
= A shell modeled after C was also written around this time
e UNIXisn't open source, so an open source implementation of the UNIX shell was
developed, known as the Bourne again shell, or bash

Shells Today

e bash is the default shell on most Linux operating systems as well as macOS
= Ubuntu and Debian use a shell known as dash for some startup scripts
» Korn Shell (ksh) and Z Shell (zsh) are other common Bourne-like shells

e The Cshell (csh) is another common shell
= The default shell on GL at UMBC is tcsh or Turbo C Shell

e PowerShell is available on many Windows based computers

Non-Scripting Features of Shells

e Tab Completion
e History
= Global (most shells)
= Context-based (fish)
e Prompt Customization

Selecting a Shell

e All operating system come with a default shell

e |nstandard Linux installations the chsh command can be used to select any
installed shell
chs -s SHELL_PATH USER_NAME

e To change your shell in GL, you must go to https://webadmin.umbc.edu/admin and
click on "Edit my Shell and Unix Settings"

https://webadmin.umbc.edu/admin

Bash

e For this class we will be using bash
e Even if a system does not use bash as the default shell, almost all systems have it
= This makes scripts written in bash very portable
e bash has been managed since it's creation by the GNU Project
= Codeisopen source, and can be contributed to at
https://git.savannah.gnu.org/cgit/bash.git

https://git.savannah.gnu.org/cgit/bash.git

Unix Utilities

e Bash scripts commonly rely on many simple programs to accomplish various tasks
e These programs are sometimes called Unix Utilities
= Usually do only one thing
= Most operate on STDIN and STDOUT by default
e macOS has many of these, but some are only available in the GNU Core Utils
library

Getting Help In the Shell

e Most Unix utilities, and many other programs, install a manual along with program
e To access, use the man command followed by the command name

= Sometimes help is access using the info command instead....
* bash also hasit's own help utility, he 1p which provides help on bash specific
commands

In [

]:

man cp

In [

]:

help cd

Utilities You Already Use

s

rm
mv
cp
mkdir
pwd

echo

e Echois the most commonly used command to print something to the screen
e By default, newlines and other escapes are not "translated" into the proper
character
= Use the -e flag to accomplish this
= To suppress the newline at the end of echo use the -n flag
e Echo cantake multiple arguments, and will separate them by a space by default
= To prevent separation by a space, use the -s flag

In

echo
echo
echo
echo

"This will print as expected"
This will too
"This\ndoesn't\nhave\nnewlines"

=

"This\ndoes\nhave\nnewlines"

cat

e catisused toconcatenate files together
e |tisalsoused by lazy programmers (me included) to display the contents of a file
to a screen, but usually there are better utilities for that
= |ess
= more

In

In

[

]:

]:

cat src/perl/anchored.pl

cat -n src/perl/anchored.pl

In

]:

cat src/perl/anchored.pl src/perl/unanchored.pl

sort

e sortsorts the lines of a file!
e By default this is done lexicographically

= By using flags you can sort by numbers, months, etc.
e The -r flagwill sortinrevers order

e By using the —u flag, each unique line will be printed only once

In

]:

sort data/elements.txt

In

]:

sort -n data/elements.txt

In

]:

sort --key=2 data/elements.txt

In

In

]:

]:

sort -n data/dir sizes.txt

sort -h data/dir sizes.txt

unig

e uniginitsdefault form accomplishes the same as sort -u
e |nputtounigisassumed to be sorted already
e unigqgisuseful to:

= Count the number of times each unique line occurs
= |gnore case when comparing lines
= Only compare the first N characters of a line

In

]:

sort data/git files.txt | unig -c

In

]:

sort data/git files.txt | unig -c -w3

shuf

e shuf randomly permutes the lines of a file
e Thisis extremely useful in preparing datasets

In

[

]:

shuf data/elements.txt

head & tail

e The head and tail commands display the first 10 or last 10 lines of a file by
default
= You can change the number of lines displayed using the —-n option
= The value passed to -n when using head can be negative. This means
return everything but the last n lines

In

In

In

In

cat data/git files.txt

head -nl data/git files.txt

tail -nl data/git files.txt

head -n-1 data/git files.txt

cut

e The cut command extracts columns from a file containing a dataset
e By default the delimiter used is atab
= Use the -d argument to change the delimiter

e To specify which columns to return, use the - £ argument

In

]:

#head regex starter code/food facts.tsv
cut -fl1,2 data/food facts.tsv | head

In

]:

cut -f1-4,10 -d, data/states.csv

head

paste

e paste doesthe opposite of cut

e Each line of every file is concatenated together, separated by a tab by default
= Use the -d flag to change the delmiter

In []: paste data/elements.txt data/dir sizes.txt

In []: paste -d, data/elements.txt data/dir sizes.txt

find

e findislike an extremely powerful versionof 1s
e By default, £ind will list all the files under a directory passed as an argument

= Numerous tests can be passed to find as arguments and used to filter the
list that is returned

Common find Tests

e —name matches the name of the file or directory

e —type restricts the output to files (£) or directories(d)

e -—maxdepth restricts the amount of recursion done

e -sizerestrictsresultstodirectories or files of the exact size
= Tolook for arange, add a + or - before the number

In [

]:

find .

head

In

]:

find

-type d

head

In

]:

find

-maxdepth 1 -type d

In

]:

find

-name "*ipynb"

In

]:

find ~/Teaching -type f -size +50M

Find Exercise

e Using find, return results that meet the following criteria
= Are files, not directories
1k

= Endinthe characters "*.py"
= Are greater than 20k in size

wC

* |nsome cases, it is convenient to know basic statistics about a file
e The wc or word count command returns the number of lines, words, and
charactersin afile
= Toonly print ones of these, use the -1, -w or -m flags respectively

In []: wc to sortl.txt

In []J: wc -1 to_sortl.txt

Other Helpful Utilities

e arch

® uname
e whoami
* ves

Shell Script Setup

e Ashell scriptin the simplest form is just a list of commands to execute in sequence
e Isrunusing sh (or bash if you are not sure what shell you are in) script_file

In []1: bash hello simple.sh

Shebang Line

On UNIX-like systems, if the first line of a file starts with # !, that line indicates
which program to use to run the file

Can be used with most any interpreted language

Must be the full path of the command

#!/bin/bash
#!/bin/python
#!/bin/perl

File must be executable

chmod +x FILE

In [5]: ./src/shell/hello.sh

Hello World

Variables

e Variables in bash can hold either scalar or array
= Arrays are constructed using parentheses ()
e Toinitialize a variable, use the equals sign with no spaces

In

Declaring Variables Examples

a_scalar=UMBC

another scalar="This needs quotes"
more scalars=40

even more=3.14

an_array=(letters "s p a c e s" 1.0)
#Don't do this

bad= "not what you want"

not what you want: command not found

Accessing Variables

e To access a variable a dollar sign ($) must be prepended to its name
e To access an array element, the variable name and index must occur inside of curly

braces ({})
m Scalar values can be accessed this way to, but it is optional

In

In

In

In

In

In

In

In

Accessing Variables Examples

echo

echo

echo

echo

echo

#Don
echo

echo

echo

$a_ scalar

${a_scalar}

$more scalars

Seven more

${an _array[l]}

"t Do This
$an_array

${an_array[1l]}

${an _array[*]}

Accessing Variables Exercise

e Given the following variable declarations, how would you print:
= Theletterd
= All the letters

In []: letters=(a bcde f ghij)

In

In

In

In

In

String Interpolation

e Variables will be interpolated into strings when double quotes are used

echo

echo

echo

echo

echo

= |f there are spaces, curly braces aren't needed, but its a good habit
'This class is at ${a scalar}'

"This class is at Sa scalar"

"The schools website is www.Sa scalar.edu"

"The athletics website is www.S$a scalarretrievers.com"

"The athletics website is www.${a scalar}retrievers.com"

String Operations

e Bash has numerous built in string operators allowing for
= Accessing the length (${#string})
= Accessing a substring (${#string:pos})
= Performing a search and replace on a substring
(${#string/pattern/substitution})
= Removing substrings

In

In

In

String Operation Examples

echo

echo
echo
echo

echo
echo
echo
echo
echo

${a scalar} ${#a scalar}

${a scalar} ${a scalar:1}
${a_scalar} ${a scalar:2:2}
${a_scalar} ${a scalar::2}

${a_scalar} ${a scalar/U/u}

${a_scalar} ${a scalar/V/u}

${another scalar} ${another scalar/e/x}
${another scalar} ${another scalar//e/x}
${another scalar} ${another scalar//[a-z]/x}

In

#From the front of the string

echo ${another scalar} "->" ${another scalar#T*s}
#Longest possible match
echo ${another scalar} "->" ${another scalar##T*s}

#From the back of the string

echo ${another scalar} "->" ${another scalar%e*s}
#Longest possible match
echo ${another scalar} "->" ${another scalar%%e*s}

This needs quotes -> needs quotes
This needs quotes ->

This needs quotes -> This needs quot
This needs quotes -> This n

String Operation Exercises

e Given the following variable, change the output to be:
= |ectureO1l
= ipynb
= CMSC433/LectureOl.ipynb
= |ectureO1.html

In []: string to change="LectureOl.ipynb"

Default Values

e Bash also allows default values to be used when the variable is accessed
= Can either use just for that statement
m Or set to be default for all future statements

In

Default Value Examples

an_empty var=

echo "1." San empty var
echo "2." ${an empty var:-Default}
echo "3." San empty var

echo "4." ${an empty var:=Default}
echo "5." San empty var

Environmental Variables

e Environmental Variables are global variables in the widest sense
= Used by all processes in the system for a user
= Oftensetininitialization scripts or during boot
e Shells may modify but more often than not simply access them
e By convention, environmental variables are written in all uppercase letters

In

Environmental Variable Examples

echo
echo

echo
echo
echo

"Your home dir is: SHOME"
"You are logged into: $SHOSTNAME"

"Your shell is: SSHELL"
"Your path is: SPATH"
"Your terminal is set to: STERM"

Command Line Arguments

e Command line arguments are placed in the special variables $1 through $9
= You can have more arguments, but they need to be accessed like ${10}

e The name of the script being executed in stored in $0

e The number of arguments is stored in $#

In

Command Line Argument Examples

cat src/shell/cla examples.sh
#!/bin/bash

echo "The name of the file is $O"
echo "You passed $# arguments"

echo "The first argument is $1"
echo "The second argument is $2"

echo "All the arguments are $@"

In [11]: | ./src/shell/cla examples.sh --some-flag a path additional options another one

The name of the file is ./src/shell/cla examples.sh

You passed 4 arguments

The first argument is --some-flag

The second argument is a path

All the arguments are --some-flag a path additional options another one

Special Variables

e bash uses many other special variables to refer to convenient values to have
= $$isthe process id of the currently executing script
= $PPID is the process id of the process that the script was launched from
= $?is the status of the last command executed

In

echo "Process ID (PID) is: Ss"
echo "Parent PID (PPID) is: SPPID"
whoami

echo "Status of last command: S$?"

Putting it all together

e Write a simple bash script that takes in a file name as an argument, and does the
following:
= Sorts that file, and outputs the results to the screen
= Paste that file to another file with the same name, but all o's replaced
with e's, and outputs it to the screen

./src/shell/demol.sh data/noodles

Gnochi

Penne

Ramen

Rice

Soba

Ramen Sharp

Rice Embroidery
Penne Beading
Gnochi Doll

Soba Tapestry

Leather

