
Shell Scripting

The Shell

The shell is generally considered to be the interface between the user and the
operating system

Graphical User Interface
Command Line Interface

A Little History

Shells in command line interfaces have been programmable in a limited form since
at least the �rst UNIX shell
The UNIX shell was completely rewritten in the late 1970s by Steve Bourne

A shell modeled after C was also written around this time
UNIX isn't open source, so an open source implementation of the UNIX shell was
developed, known as the Bourne again shell, or bash

Shells Today

bash is the default shell on most Linux operating systems as well as macOS
Ubuntu and Debian use a shell known as dash for some startup scripts
Korn Shell (ksh) and Z Shell (zsh) are other common Bourne-like shells

The C shell (csh) is another common shell
The default shell on GL at UMBC is tcsh or Turbo C Shell

PowerShell is available on many Windows based computers

Non-Scripting Features of Shells

Tab Completion
History

Global (most shells)
Context-based (�sh)

Prompt Customization

Selecting a Shell

All operating system come with a default shell
In standard Linux installations the chsh command can be used to select any
installed shell

To change your shell in GL, you must go to and
click on "Edit my Shell and Unix Settings"

chs -s SHELL_PATH USER_NAME

https://webadmin.umbc.edu/admin

https://webadmin.umbc.edu/admin

Bash

For this class we will be using bash
Even if a system does not use bash as the default shell, almost all systems have it

This makes scripts written in bash very portable
bash has been managed since it's creation by the GNU Project

Code is open source, and can be contributed to at
https://git.savannah.gnu.org/cgit/bash.git

https://git.savannah.gnu.org/cgit/bash.git

Unix Utilities

Bash scripts commonly rely on many simple programs to accomplish various tasks
These programs are sometimes called Unix Utilities

Usually do only one thing
Most operate on STDIN and STDOUT by default

macOS has many of these, but some are only available in the GNU Core Utils
library

Getting Help In the Shell

Most Unix utilities, and many other programs, install a manual along with program
To access, use the man command followed by the command name

Sometimes help is access using the info command instead....
bash also has it's own help utility, help which provides help on bash speci�c
commands

In []: man cp

In []: help cd

Utilities You Already Use

ls
rm
mv
cp
mkdir
pwd

echo

Echo is the most commonly used command to print something to the screen
By default, newlines and other escapes are not "translated" into the proper
character

Use the -e �ag to accomplish this
To suppress the newline at the end of echo use the -n �ag

Echo can take multiple arguments, and will separate them by a space by default
To prevent separation by a space, use the -s �ag

In []: echo "This will print as expected"

echo This will too

echo "This\ndoesn't\nhave\nnewlines"

echo -e "This\ndoes\nhave\nnewlines"

cat

cat is used to concatenate �les together
It is also used by lazy programmers (me included) to display the contents of a �le
to a screen, but usually there are better utilities for that

less
more

In []:

In []:

cat src/perl/anchored.pl

cat -n src/perl/anchored.pl

In []: cat src/perl/anchored.pl src/perl/unanchored.pl

sort

sort sorts the lines of a �le!
By default this is done lexicographically

By using �ags you can sort by numbers, months, etc.
The -r �ag will sort in revers order
By using the -u �ag, each unique line will be printed only once

In []: sort data/elements.txt

In []: sort -n data/elements.txt

In []: sort --key=2 data/elements.txt

In []:

In []:

sort -n data/dir_sizes.txt

sort -h data/dir_sizes.txt

uniq

uniq in its default form accomplishes the same as sort -u
Input to uniq is assumed to be sorted already
uniq is useful to:

Count the number of times each unique line occurs
Ignore case when comparing lines
Only compare the �rst N characters of a line

In []: sort data/git_files.txt | uniq -c

In []: sort data/git_files.txt | uniq -c -w3

shuf

shuf randomly permutes the lines of a �le
This is extremely useful in preparing datasets

In []: shuf data/elements.txt

head & tail

The head and tail commands display the �rst 10 or last 10 lines of a �le by
default

You can change the number of lines displayed using the -n option
The value passed to -n when using head can be negative. This means
return everything but the last n lines

In []:

In []:

In []:

In []:

cat data/git_files.txt

head -n1 data/git_files.txt

tail -n1 data/git_files.txt

head -n-1 data/git_files.txt

cut

The cut command extracts columns from a �le containing a dataset
By default the delimiter used is a tab

Use the -d argument to change the delimiter
To specify which columns to return, use the -f argument

In []: #head regex_starter_code/food_facts.tsv

cut -f1,2 data/food_facts.tsv | head

In []: cut -f1-4,10 -d, data/states.csv | head

paste

paste does the opposite of cut
Each line of every �le is concatenated together, separated by a tab by default

Use the -d �ag to change the delmiter

In []: paste data/elements.txt data/dir_sizes.txt

In []: paste -d, data/elements.txt data/dir_sizes.txt

�nd

find is like an extremely powerful version of ls
By default, find will list all the �les under a directory passed as an argument

Numerous tests can be passed to �nd as arguments and used to �lter the
list that is returned

Common �nd Tests

-name matches the name of the �le or directory
-type restricts the output to �les (f) or directories(d)
-maxdepth restricts the amount of recursion done
-size restricts results to directories or �les of the exact size

To look for a range, add a + or - before the number

In []: find . | head

In []: find . -type d | head

In []: find . -maxdepth 1 -type d

In []: find . -name "*ipynb"

In []: find ~/Teaching -type f -size +50M

Find Exercise

Using �nd, return results that meet the following criteria
Are �les, not directories
End in the characters "*.py"
Are greater than 20k in size

wc

In some cases, it is convenient to know basic statistics about a �le
The wc or word count command returns the number of lines, words, and
characters in a �le

To only print ones of these, use the -l, -w or -m �ags respectively

In []:

In []:

wc to_sort1.txt

wc -l to_sort1.txt

Other Helpful Utilities

arch
uname
whoami
yes

Shell Script Setup

A shell script in the simplest form is just a list of commands to execute in sequence
Is run using sh (or bash if you are not sure what shell you are in) script_�le

In []: bash hello_simple.sh

Shebang Line

On UNIX-like systems, if the �rst line of a �le starts with #!, that line indicates
which program to use to run the �le
Can be used with most any interpreted language
Must be the full path of the command

File must be executable

chmod +x FILE

#!/bin/bash

#!/bin/python

#!/bin/perl

In [5]: ./src/shell/hello.sh

Hello World

Variables

Variables in bash can hold either scalar or array
Arrays are constructed using parentheses ()

To initialize a variable, use the equals sign with no spaces

Declaring Variables Examples

In [7]: a_scalar=UMBC

another_scalar="This needs quotes"

more_scalars=40

even_more=3.14

an_array=(letters "s p a c e s" 1.0)

#Don't do this

bad= "not what you want"

not what you want: command not found

Accessing Variables

To access a variable a dollar sign ($) must be prepended to its name
To access an array element, the variable name and index must occur inside of curly
braces ({})

Scalar values can be accessed this way to, but it is optional

Accessing Variables Examples

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

echo $a_scalar

echo ${a_scalar}

echo $more_scalars

echo $even_more

echo ${an_array[1]}

#Don't Do This

echo $an_array

echo ${an_array[1]}

echo ${an_array[*]}

Accessing Variables Exercise

Given the following variable declarations, how would you print:
The letter d
All the letters

In []: letters=(a b c d e f g h i j)

String Interpolation

Variables will be interpolated into strings when double quotes are used
If there are spaces, curly braces aren't needed, but its a good habit

In []:

In []:

In []:

In []:

In []:

echo 'This class is at ${a_scalar}'

echo "This class is at $a_scalar"

echo "The schools website is www.$a_scalar.edu"

echo "The athletics website is www.$a_scalarretrievers.com"

echo "The athletics website is www.${a_scalar}retrievers.com"

String Operations

Bash has numerous built in string operators allowing for
Accessing the length (${#string})
Accessing a substring (${#string:pos})
Performing a search and replace on a substring
(${#string/pattern/substitution})
Removing substrings

String Operation Examples

In []:

In []:

In []:

echo ${a_scalar} ${#a_scalar}

echo ${a_scalar} ${a_scalar:1}

echo ${a_scalar} ${a_scalar:2:2}

echo ${a_scalar} ${a_scalar::2}

echo ${a_scalar} ${a_scalar/U/u}

echo ${a_scalar} ${a_scalar/V/u}

echo ${another_scalar} ${another_scalar/e/x}

echo ${another_scalar} ${another_scalar//e/x}

echo ${another_scalar} ${another_scalar//[a-z]/x}

In [8]: #From the front of the string

echo ${another_scalar} "->" ${another_scalar#T*s}

#Longest possible match

echo ${another_scalar} "->" ${another_scalar##T*s}

#From the back of the string

echo ${another_scalar} "->" ${another_scalar%e*s}

#Longest possible match

echo ${another_scalar} "->" ${another_scalar%%e*s}

This needs quotes -> needs quotes

This needs quotes ->

This needs quotes -> This needs quot

This needs quotes -> This n

String Operation Exercises

Given the following variable, change the output to be:
Lecture01
ipynb
CMSC433/Lecture01.ipynb
Lecture01.html

In []: string_to_change="Lecture01.ipynb"

Default Values

Bash also allows default values to be used when the variable is accessed
Can either use just for that statement
Or set to be default for all future statements

Default Value Examples

In []: an_empty_var=

echo "1." $an_empty_var

echo "2." ${an_empty_var:-Default}

echo "3." $an_empty_var

echo "4." ${an_empty_var:=Default}

echo "5." $an_empty_var

Environmental Variables

Environmental Variables are global variables in the widest sense
Used by all processes in the system for a user
Often set in initialization scripts or during boot

Shells may modify but more often than not simply access them
By convention, environmental variables are written in all uppercase letters

Environmental Variable Examples

In []: echo "Your home dir is: $HOME"

echo "You are logged into: $HOSTNAME"

echo "Your shell is: $SHELL"

echo "Your path is: $PATH"

echo "Your terminal is set to: $TERM"

Command Line Arguments

Command line arguments are placed in the special variables $1 through $9
You can have more arguments, but they need to be accessed like ${10}

The name of the script being executed in stored in $0
The number of arguments is stored in $#

Command Line Argument Examples

In [9]: cat src/shell/cla_examples.sh

#!/bin/bash

echo "The name of the file is $0"

echo "You passed $# arguments"

echo "The first argument is $1"

echo "The second argument is $2"

echo "All the arguments are $@"

In [11]: ./src/shell/cla_examples.sh --some-flag a_path additional_options another_one

The name of the file is ./src/shell/cla_examples.sh

You passed 4 arguments

The first argument is --some-flag

The second argument is a_path

All the arguments are --some-flag a_path additional_options another_one

Special Variables

bash uses many other special variables to refer to convenient values to have
$$ is the process id of the currently executing script
$PPID is the process id of the process that the script was launched from
$? is the status of the last command executed

In []: echo "Process ID (PID) is: $$"

echo "Parent PID (PPID) is: $PPID"

whoami

echo "Status of last command: $?"

Putting it all together

Write a simple bash script that takes in a �le name as an argument, and does the
following:

Sorts that �le, and outputs the results to the screen
Paste that �le to another �le with the same name, but all o's replaced
with e's, and outputs it to the screen

In [17]: ./src/shell/demo1.sh data/noodles

Gnochi

Penne

Ramen

Rice

Soba

Ramen Sharp

Rice Embroidery

Penne Beading

Gnochi Doll

Soba Tapestry

 Leather

