Regular Expressions

Backreferences, Accessing Matches, and Substitution

In []:

Warm-Up

Write a regular expression that finds all songs
in the top 100 by only one person

Finesse by Bruno Mars & Cardi B SHOULD NOT MATCH
Too Good At Goodbyes by Sam Smith SHOULD MATCH
Young Dumb & Broke by Khalid SHOULD MATCH

#

foreach my $s (@songs) {
say $s if $s =~ /REGEX_HERE/;
b

Today’s Data

e Today we will be working CSV data of international airports and their cities,
countries, and continent
e Each line has the format of

(oYY,
City, Airport Name, Airport Code, Country, Continent

e The data was scraped from
https://en.wikipedia.org/wiki/List of international airports by country

https://en.wikipedia.org/wiki/List_of_international_airports_by_country

Backreferences

e |ast lecture we primarily used grouping to make our regex's neater.
e One of the most powerful uses of grouping is to specify seeing the same match
later in the expression
e Each group is assigned a number by the regular expression engine
= Torefer back to that group, use backslash followed by the number, e.g.
\1

In []: open(my $fh, ‘'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
say $row if Srow =~ /ANt (\b\w+\b).*\W.*\1.*\t.*\t.*\t.*$/;

b
close($fh);

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
say $row if $row =~
/NEF(O\w) L (\w) L F(\w) L *NENIN2\3\t. *\t.*$/;
b
close($fh);

Backreference Ordering

e |fthere are multiple groups in a regex, they are numbered by their left
parentheses
e This can get confusing, here is a helpful chart presented by Dan Hood

/ (. R/

In []:

Backrefercing Practice

Write a regular epxression that finds airports with at
least part of their country name in the airport name.

Alternatively, find a country with part of the airport
name in it

open(my $fh, 'data/airports.tsv');

while (my $row = <$th>) {
chomp $row; #Remove trailing \n
say $row if $row =~ /REGEX_HERE/;

b
close($fh);

Accessing Matches

e Often we want to retrieve a specific part of the match
e We can do this by using groups, and then referring back to the group number
later in the code
e Each language has aslightly different way of doing this
= |n Perl this uses the same numbering scheme as back-references, but
the matches are stored in Perl variables
= |fitisthe first match, use $1 rather than \1

In []:

open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
if ($row =~ /\t(.*)\t.*\tEngland/){
say $1;
3

by
close($fh);

In [] open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
if ($row =~ /A(.*)\t\1(.+)\sInternational Airport\t/){
say $2;
3

b
close($fh);

Substitution Introduction

e Many times the reason we want to know if something is present is so we can

replace it
e Regular expressions give us much more powerful, dynamic ways of replacing

than just string literals offer
e The following aren't possible (or aren't simple) with string literals
= 410-455-1000 — (410) 455-1000
= 1f X == o print x , y ; X, y =Yy, XxX—=1f x ==
4: print X, y; X, Yy =Y, X

In []:

Substitution Basics

e In Perl the syntax for a substitution regexis s/regex/substitution/
e Theregexisthe only part that can use metacharacters
= The substition can consist of literal characters or special variables

$ssn = "A social security number looks like 000-12-3456 or 000-98-7654",;
$ssn =~ s/\d{3}-\d\d-\d{4}/****/;
say $ssn;

Simple Substitution using the g Modifier

* |In most cases, we want to use substitution to substitute all matches, so we
should use the g modifier

In []: $ssn = "A social security number looks like 000-12-3456 or 000-98-7654";
$ssn =~ s/\d{3}-\d\d-\d{4}/****/qg;
say $ssn;

Simple Substitution with Literals

e The pattern portion can consist only of literals

= Many languages now have a specific replace method or function to
operate on strings

= Still very useful to use fast simple tools like sed

In []: $umbc = "UMBC is located in MD";
$umbc =~ s/UMBC/The University of Maryland, Baltimore County/g;
say $umbc;
$umbc =~ s/MD/Maryland/g;
say $umbc;

In []:

Basic Substitution Practice

Write a substitution pattern to replace any non-legal UNIX filename
characters with an underscore. Multipe non-legal characters in

a row should be replaced with a single underscore

Legal Characters: A-Z, a-z, 0-9, . , - , _

$file_name = " My invalid / file[Name]";

$file_name =~ s/REGEX/REPLACE/g;

say $file_name;

Backreference Variables

e Many common tasks, like reformatting, involving saving part of the match
= To refer to a group found in the pattern, use $x, where x is the group
number

In []: $today = "Today's date is 2-5-18";
$today =~ s/(\d?\d)-(\d?\d)-(\d\d)/$1\/$2\/$3/g;
say $today;

In []: $today = "Today's date is 02-05-18";
$today =~ s/(\d?2\d)-(\d?\d)-(\d\d)/$1\/$2\/$3/g;
say $today;

In []: $ssn = "A social security number looks like 000-12-3456 or 000-98-7654";
$ssn =~ s/\d\d\d-\d\d- (\d{4})/***-**_$1/qg;
say $ssn;

In []:

Sidenote: Changing Delimiters

e When matching or substituting a string with the / character, it can be very
annoying to escape all of them
e Almost any puncuation can be used as the delimiter

= |fitisacharacter that comes in pairs, you should use the left and right
versions

$today = "Today's date is 02-05-18";
$today =~ s[(\d?\d)-(\d?\d)-(\d\d)][$1/$2/%$3]9g;
say $today;

In []: $today = "Today's date is 09-07-17";
$today =~ s!(\d?\d)-(\d?\d)-(\d\d)!$1/$2/$3!g;
say $today;

In []:

Substitution Live Example

Given a string of non PEP compliant spacing 1in
[] or {} or (), remove all extraneous spacing
array[4 | -> array[4]

$x = "spam(ham[1], { eggs: 2 })";

$x =~ s/REGEX/SUBSTITUTE/g;

say $x;

Substitution Practice

In [1: # Repalace all relative links (of the form href="index.html" etc,)
with absolute links, (of the

#form href="https://cs.umbc.edu/coursese/undergraduate/433/index.html")
assume absolute path is as above

$html = 'A linkAn image';
$html =~ s|REGEX|SUBSTITUTE|Q;
say $html;

Lookahead and Lookbehind

* |nsome instances, we want to match, but not capture a piece of text
= Are zero-width assertaions
= After the look ahead is complete we return to the same place in the
text

e Alookahead is written as:
(?=pattern)

* Alookbehind is written as:
(?<=pattern)

= They usually cannot be variable length

In []:

Lookahead Example

open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
if ($row =~ /\t.*\t(?=.*\tEngland)/){
say $&;
}
b

close($fh);

In [] open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
if ($row =~ s/\t(.*)\t(?=.*\tEngland)/\tBritian's $1\t/){
say $row;
3

by
close($fh);

In []:

Lookbehind Example

open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
if ($row =~ /(?<=London\t).*/){
say $&;
}
b

close($fh);

Lookahead and Lookbehind Example

e |ets assume thatin our text every 7 digit number is a phone number

In [1: $bad_number = "1234567";
$bad_number =~ s/(?<=\d\d\d)(?=\d\d\d\d)/-/g;
say $bad_number;

Live Lookahead Example

e |nthe beginning of the lecture we looked at how regex's are helpful for code
reformattting

e The specific python convention we looked at was no spaces immediately before
a comma, semicolon, or colon

In []: $code = "if x == 4 : print x , y ; X , y =y , X"
$code =~ s/REGEX/REPLACEMENT/g;
say $code;

Lookahead Practice

In []: # Substitute all instances of James with President,
when followed by Monroe or Madison or Polk

$text = <<HERE;
James 1is a common name for presidents, there have been many
presidents named James, like James Madison, James Monroe,

and James Polk. Lebron James has not been US president.
HERE

$text =~ s/REXEG/SUBSTITUTION/g;
say $text;

Negative Lookahead and Behind

e A useful ability is to ensure the thing you are looking for is not followed or
preceded by something

e Thisis a negative lookahead or lookbehind, and the syntax is almost identical,
except the=isnowa !

e Negative Lookahead
(?!pattern)
e Negative Lookbehind

(?<!pattern)

Negative Lookahead and Behind Examples

In []: open(my $fh, 'data/airports.tsv');

while (my $row = <$fh>) {
chomp $row; #Remove trailing \n
if ($row =~ /A.*\t.*International (?'Airport).*\t/){
say $&;
}

b
close($fh);

Splitting Strings
e Regular Expressions allow strings to be split in more dynamic ways

In []: $bad_csv_data = "Name,Phone Number,Email,a,list,of,websites,visited, Date";

@data = split /, (?=[A-Z])/, $bad_csv_data;
foreach $d (@data)({
if ($d =~ /,/){
foreach $e (split /,/, $d, 2)
{say $e}
}
else{
say $d;

