Scripting Languages

Course Information

based off notes from Dan Hood

Contact Information

Bryan Wilkinson

bryan.wilkinson@umbc.edu

ITE 373

Office Hours: Mondays 10:30 AM - 11:30 AM and Thursdays 3:00 PM - 4:30 PM
or by appointment

Website: https://www.csee.umbc.edu/courses/undergraduate/433/spring18/

https://www.csee.umbc.edu/courses/undergraduate/433/spring18/

Tips for This Course

e Be comfortable looking things up with resources | have provided, as well as
coming to me for help
e Start Projects Early
= Quizzes are meant to be a motivation
e Don't try to write down everything on a slide, use the slides provided and take
notes on top of that

Example Quiz Question

e Which of the following character classes matches all types of white space
= \w

= \s

= \S

=\t

Example Quiz Question
What is the output of the following code and why?

case 9 1in

*9)
echo "This ends in a nine"
H

9)
echo "This is a nine"

*) r 7
echo "Nothing Matched"
H

esac

Example Quiz Question

e Briefly describe what benefit AJAX provides. What type of websites and
interactions on those websites does it enable that would not be possible without
it? (2-3 sentences)

Scripting Languages

e Usually interpreted

= Rapid development

= Portability - cross platform

= Slower - less than in the past
e Don't need amain

= But can have one

Scripting Languages

e Good to integerate existing programs with

e Flexible
= Easytoextend
= |ots of libraries available for each language
= Usually a very easy way of installing them

REPL

e One of the most common characteristics of scripting languages is that a program
known as a REPL is provided
e REPL stands for
= Read
= Evaluate
= Print
= |oop
e This allows scripting languages to be used interactively

Comparison between Scripting and "Systems” Languages

e These are generalizations

Scripting Languages | Systems Languages

Higher Level Lower Level
Loosely Typed Strongly Typed
Interpreted Compiled
Runs Slower Runs Faster

Faster Development | Slower Development

Smaller Code Size Larger Code Size

Ousterhout, John K. "Scripting: Higher level programming for the 21st century." Computer 31.3 (1998): 23-30.

Reasons to prefer scripting or systems languages

The application requires a GUI

The application involves a lot of string manipulation

The application needs to use a variety of pre-existing components
New features need to be added very quickly and frequently

Ousterhout, John K. "Scripting: Higher level programming for the 21st century." Computer 31.3 (1998): 23-30.

Popular Applications

e System Administration
e Text Manipulation
e Web Development
= Front-end/Client-side
= Back-end/Sever-side
e Graphical User Interfaces

Popular Applications

e Protyping
e Automation
e Hacking
e Gluing
= Using two or more existing programs together

Famous Projects Using Scripting Languages

e Bash

= Parts of Git
e R

= Many internal data analytics in large companies

= Many Graphics and analysis on 538.com and NYT's the Upshot
e JavaScript

= Atom Text Editor

= Practically Every Website

Famous Projects Using Scripting Languages (Part 2)

e PHP
= Wordpress
= Facebook
= Wikipedia
e Ruby
= Homebrew
= Jekyll

How This Class Will Help You Get a Job

e Web Development
= Client Side Scripting
= Server Side Scripting
e SysAdmin
= Backups
= Networks
= |ogfile Rotation

How This Class Will Help You Get a Job

e Computer Security
= Automated Testing
= | ogfile Inspection

e Software Development
= Automated Testing
= Prototyping
= Cross-Platform Code

How This Class Will Help You Get a Job

e Research
= Access to existing libraries
= Gluing existing code in multiple languages
= Can share your code easily

Language Tour: Perl

sub fibRec {
my $n = shift;
$n < 2 ? $n : fibRec($n - 1) + fibRec($n - 2);

https://rosettacode.org/wiki/Fibonacci_sequence#Perl

Language Tour: Perl

print join('.', split /,/, 'Hello,How,Are,You,Today'), "\n";

http://rosettacode.org/wiki/Tokenize_a_string#Perl

Language Tour: Bash
fib() {

local n=%$1

[$n -1t 2] && echo -n $n || echo -n $(($(fib $((n - 1))) + $(fib $((
}n -21)))))

https://rosettacode.org/wiki/Fibonacci_sequence#UNIX_Shell

Language Tour: Bash

string="'Hello, How, Are, You, Today'
(IFS=,

printf '%s.' $string
echo)

http://rosettacode.org/wiki/Tokenize_a_string#UNIX_Shell

Language Tour: R

recfibo <- function(n) {

if (n<2)n

else Recall(n-1) + Recall(n-2)
b

https://rosettacode.org/wiki/Fibonacci_sequence#R

Language Tour:

text <- "Hello, How, Are, You, Today"
junk <- strsplit(text, split=",")
print(paste(unlist(junk), collapse="."))

http://rosettacode.org/wiki/Tokenize_a_string#R

Language Tour: JavaScript

function fib(n) {
return n<2?n:fib(n-1)+fib(n-2);

}

https://rosettacode.org/wiki/Fibonacci_sequence#JavaScript

Language Tour: JavaScript

alert("Hello,How, Are,You, Today".split(",").join("."));

http://rosettacode.org/wiki/Tokenize_a_string#JavaScript

Language Tour: PHP
<?php
function fibRec($n) {
return $n < 2 ? $n : fibRec($n-1) + fibRec($n-2);

}

?>

https://rosettacode.org/wiki/Fibonacci_sequence#PHP

Language Tour: PHP

<?php

$str = 'Hello, How, Are,You, Today';

echo implode('.', explode(',', $str));
?>

http://rosettacode.org/wiki/Tokenize a string#PHP

http://rosettacode.org/wiki/Tokenize_a_string#PHP

Jupyter

e |ectures this semester are prepared using a tool called Jupyter
= Allows mixing of code and notes
= Kernels available for many languges
e Following Examples from http://r-statistics.co/Complete-Ggplot2-Tutorial-

Part1-With-R-Code.html

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

In [4]: 1library(ggplot2)
ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point() +
geom_smooth(method="1m") +
coord_cartesian(xlim=c(0,0.1), ylim=c(0, 1000000)) +
labs(title="Area Vs Population", subtitle="From midwest dataset", y="Populatio

n", x="Area", caption="Midwest Demographics")

Area Vs Population
From midwest dataset

1000000 -
® ®
L]
L
[]
750000 -
[]
L
-
kS
o .
S 500000- ¢ .
o]
o ®
[
L
L . L
* .

In [5]: 1library(ggplot2)
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state), size=3) + # Set color to vary based on state categ

ories.

geom_smooth(method="1m", col="firebrick", size=2) +

coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +

labs(title="Area Vs Population", subtitle="From midwest dataset", y="Populatio
n", x="Area", caption="Midwest Demographics")

plot(gg)

Area Vs Population
From midwest dataset

1000000 -
& []
®
II-
750000 -
@
state
c oL
= o IN
S 500000- ot o -
g o °
- o ® oH
o wi

In [6]:

library(ggplot2)

Filter required rows.

midwest_sub <- midwest[midwest$poptotal > 300000,]

midwest_sub$large_county <- ifelse(midwest_sub$poptotal > 300000, midwest_sub$co
unty, llll)

Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="1loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(title="Area Vs Population", y="Population", x="Area'", caption="Source: mi
dwest")

gg + geom_label(aes(label=large_county), size=2, data=midwest_sub, alpha=0.25) +
labs(subtitle="with ggplot2::geom_label") + theme(legend.position = '"None") #
label

Plot text and label that REPELS eachother (using ggrepel pkg) ------------
library(ggrepel)

gg + geom_label_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(
subtitle="with ggrepel::geom_label_repel") + theme(legend.position = "None") #
label

Warning message:

“Removed 15 rows containing non-finite values (stat_smooth).”Warning message:
“Removed 15 rows containing missing values (geom_point).”Warning message:
“Removed 14 rows containing missing values (geom_label).”

Error in library(ggrepel): there is no package called ‘ggrepel’
Traceback:

Binder

e Binder uses a combination of Jupyter and related projects along with Docker to
create a cloud based notebook
e Anyone canrun with the link, creates a virtual machine per session
= Nothingis saved in the virtual machine permanetly
e A great way to try out lectures interactively, or explore what small changes to

the code will do

