
Scripting Languages

Course Information

based off notes from Dan Hood

Contact Information

Bryan Wilkinson

bryan.wilkinson@umbc.edu
ITE 373
Of�ce Hours: Mondays 10:30 AM - 11:30 AM and Thursdays 3:00 PM - 4:30 PM
or by appointment
Website: https://www.csee.umbc.edu/courses/undergraduate/433/spring18/

https://www.csee.umbc.edu/courses/undergraduate/433/spring18/

Tips for This Course

Be comfortable looking things up with resources I have provided, as well as
coming to me for help
Start Projects Early

Quizzes are meant to be a motivation
Don't try to write down everything on a slide, use the slides provided and take
notes on top of that

Example Quiz Question

Which of the following character classes matches all types of white space
\w
\s
\S
\t

Example Quiz Question

What is the output of the following code and why?

case 9 in
 *9)
 echo "This ends in a nine"
 ;;
 9)
 echo "This is a nine"
 ;;
 *)
 echo "Nothing Matched"
 ;;
esac

Example Quiz Question

Brie�y describe what bene�t AJAX provides. What type of websites and
interactions on those websites does it enable that would not be possible without
it? (2-3 sentences)

Scripting Languages

Usually interpreted
Rapid development
Portability - cross platform
Slower - less than in the past

Don't need a main
But can have one

Scripting Languages

Good to integerate existing programs with
Flexible

Easy to extend
Lots of libraries available for each language
Usually a very easy way of installing them

REPL

One of the most common characteristics of scripting languages is that a program
known as a REPL is provided
REPL stands for

Read
Evaluate
Print
Loop

This allows scripting languages to be used interactively

Comparison between Scripting and "Systems" Languages

These are generalizations

Scripting Languages Systems Languages

Higher Level Lower Level

Loosely Typed Strongly Typed

Interpreted Compiled

Runs Slower Runs Faster

Faster Development Slower Development

Smaller Code Size Larger Code Size

Ousterhout, John K. "Scripting: Higher level programming for the 21st century." Computer 31.3 (1998): 23-30.

Reasons to prefer scripting or systems languages

The application requires a GUI
The application involves a lot of string manipulation
The application needs to use a variety of pre-existing components
New features need to be added very quickly and frequently

Ousterhout, John K. "Scripting: Higher level programming for the 21st century." Computer 31.3 (1998): 23-30.

Popular Applications

System Administration
Text Manipulation
Web Development

Front-end/Client-side
Back-end/Sever-side

Graphical User Interfaces

Popular Applications

Protyping
Automation
Hacking
Gluing

Using two or more existing programs together

Famous Projects Using Scripting Languages

Bash
Parts of Git

R
Many internal data analytics in large companies
Many Graphics and analysis on 538.com and NYT's the Upshot

JavaScript
Atom Text Editor
Practically Every Website

Famous Projects Using Scripting Languages (Part 2)

PHP
Wordpress
Facebook
Wikipedia

Ruby
Homebrew
Jekyll

How This Class Will Help You Get a Job

Web Development
Client Side Scripting
Server Side Scripting

SysAdmin
Backups
Networks
Log�le Rotation

How This Class Will Help You Get a Job

Computer Security
Automated Testing
Log�le Inspection

Software Development
Automated Testing
Prototyping
Cross-Platform Code

How This Class Will Help You Get a Job

Research
Access to existing libraries
Gluing existing code in multiple languages
Can share your code easily

Language Tour: Perl

https://rosettacode.org/wiki/Fibonacci_sequence#Perl

sub fibRec {
 my $n = shift;
 $n < 2 ? $n : fibRec($n - 1) + fibRec($n - 2);
}

Language Tour: Perl

http://rosettacode.org/wiki/Tokenize_a_string#Perl

print join('.', split /,/, 'Hello,How,Are,You,Today'), "\n";

Language Tour: Bash

https://rosettacode.org/wiki/Fibonacci_sequence#UNIX_Shell

fib() {
 local n=$1
 [$n -lt 2] && echo -n $n || echo -n $(($(fib $((n - 1))) + $(fib $((
 n - 2)))))
}

Language Tour: Bash

http://rosettacode.org/wiki/Tokenize_a_string#UNIX_Shell

string='Hello,How,Are,You,Today'

(IFS=,
 printf '%s.' $string
 echo)

Language Tour: R

https://rosettacode.org/wiki/Fibonacci_sequence#R

recfibo <- function(n) {
 if (n < 2) n
 else Recall(n-1) + Recall(n-2)
}

Language Tour:

http://rosettacode.org/wiki/Tokenize_a_string#R

text <- "Hello,How,Are,You,Today"
junk <- strsplit(text, split=",")
print(paste(unlist(junk), collapse="."))

Language Tour: JavaScript

https://rosettacode.org/wiki/Fibonacci_sequence#JavaScript

function fib(n) {
 return n<2?n:fib(n-1)+fib(n-2);
}

Language Tour: JavaScript

http://rosettacode.org/wiki/Tokenize_a_string#JavaScript

alert("Hello,How,Are,You,Today".split(",").join("."));

Language Tour: PHP

https://rosettacode.org/wiki/Fibonacci_sequence#PHP

<?php
function fibRec($n) {
 return $n < 2 ? $n : fibRec($n-1) + fibRec($n-2);
}
?>

Language Tour: PHP
<?php
$str = 'Hello,How,Are,You,Today';
echo implode('.', explode(',', $str));
?>

http://rosettacode.org/wiki/Tokenize_a_string#PHP

http://rosettacode.org/wiki/Tokenize_a_string#PHP

Jupyter

Lectures this semester are prepared using a tool called Jupyter
Allows mixing of code and notes
Kernels available for many languges

Following Examples from http://r-statistics.co/Complete-Ggplot2-Tutorial-
Part1-With-R-Code.html

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

In [4]: library(ggplot2)
ggplot(midwest, aes(x=area, y=poptotal)) +
 geom_point() +
 geom_smooth(method="lm") +
 coord_cartesian(xlim=c(0,0.1), ylim=c(0, 1000000)) +
 labs(title="Area Vs Population", subtitle="From midwest dataset", y="Populatio
n", x="Area", caption="Midwest Demographics")

In [5]: library(ggplot2)
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
 geom_point(aes(col=state), size=3) + # Set color to vary based on state categ
ories.
 geom_smooth(method="lm", col="firebrick", size=2) +
 coord_cartesian(xlim=c(0, 0.1), ylim=c(0, 1000000)) +
 labs(title="Area Vs Population", subtitle="From midwest dataset", y="Populatio
n", x="Area", caption="Midwest Demographics")
plot(gg)

In [6]: library(ggplot2)

Filter required rows.
midwest_sub <- midwest[midwest$poptotal > 300000,]
midwest_sub$large_county <- ifelse(midwest_sub$poptotal > 300000, midwest_sub$co
unty, "")

Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
 geom_point(aes(col=state, size=popdensity)) +
 geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
 labs(title="Area Vs Population", y="Population", x="Area", caption="Source: mi
dwest")

gg + geom_label(aes(label=large_county), size=2, data=midwest_sub, alpha=0.25) +
 labs(subtitle="With ggplot2::geom_label") + theme(legend.position = "None") #
 label

Plot text and label that REPELS eachother (using ggrepel pkg) ------------
library(ggrepel)

gg + geom_label_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(
subtitle="With ggrepel::geom_label_repel") + theme(legend.position = "None") #
 label

Warning message:
“Removed 15 rows containing non-finite values (stat_smooth).”Warning message:
“Removed 15 rows containing missing values (geom_point).”Warning message:
“Removed 14 rows containing missing values (geom_label).”

Error in library(ggrepel): there is no package called ‘ggrepel’
Traceback:

Binder

Binder uses a combination of Jupyter and related projects along with Docker to
create a cloud based notebook
Anyone can run with the link, creates a virtual machine per session

Nothing is saved in the virtual machine permanetly
A great way to try out lectures interactively, or explore what small changes to
the code will do

