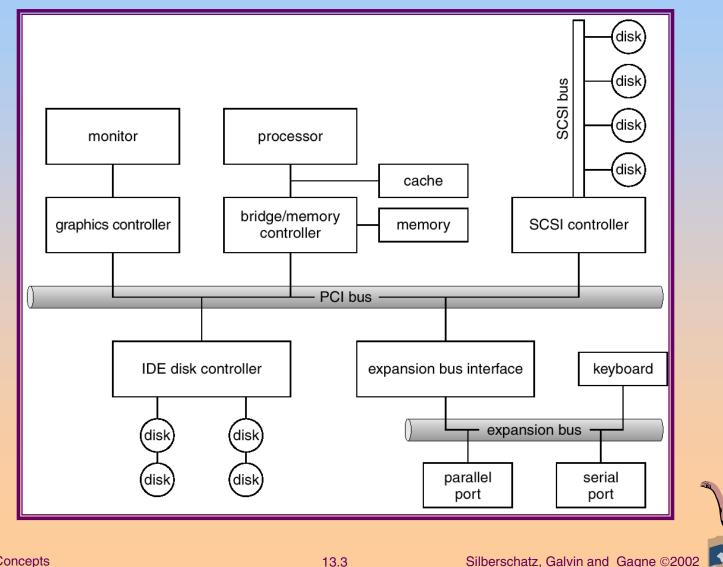


Chapter 13: I/O Systems

- I/O Hardware
- Application I/O Interface
 - Kernel I/O Subsystem
 - Transforming I/O Requests to Hardware Operations
 - Streams
 - Performance

<u>,</u>	


I/O Hardware

- Incredible variety of I/O devices
- Common concepts
 - Port
 - Bus (daisy chain or shared direct access)
 - Controller (host adapter)
 - I/O instructions control devices
 - Devices have addresses, used by
 - Direct I/O instructions
 - Memory-mapped I/O

A Typical PC Bus Structure

Operating System Concepts

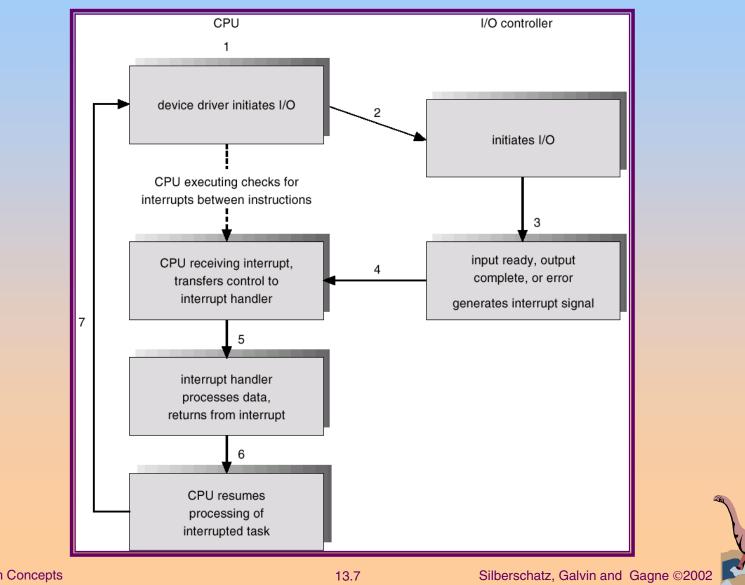
Device I/O Port Locations on PCs (partial)

I/O address range (hexadecimal)	device
000-00F	DMA controller
020-021	interrupt controller
040-043	timer
200-20F	game controller
2F8-2FF	serial port (secondary)
320-32F	hard-disk controller
378-37F	parallel port
3D0-3DF	graphics controller
3F0-3F7	diskette-drive controller
3F8-3FF	serial port (primary)

Polling

- Determines state of device
 - command-ready
 - + busy
 - Error

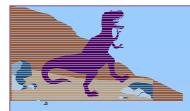
Busy-wait cycle to wait for I/O from device


Interrupts

CPU Interrupt request line triggered by I/O device

- Interrupt handler receives interrupts
- Maskable to ignore or delay some interrupts
- Interrupt vector to dispatch interrupt to correct handler
 - Based on priority
 - Some unmaskable
- Interrupt mechanism also used for exceptions

Interrupt-Driven I/O Cycle

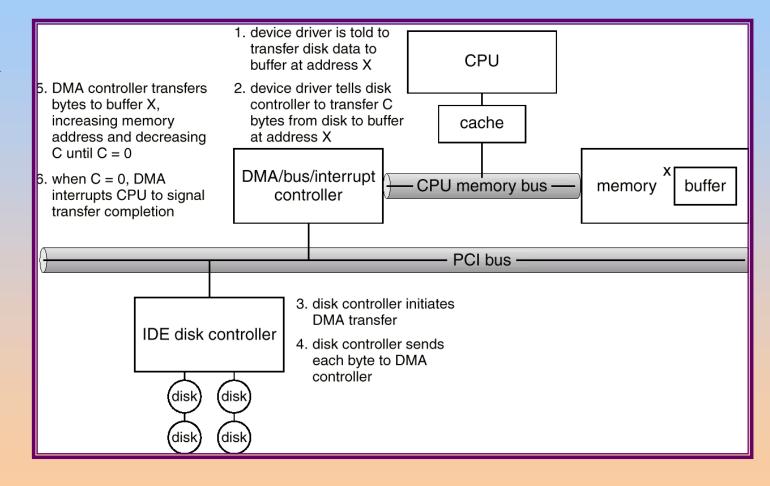


Operating System Concepts

Intel Pentium Processor Event-Vector Table

0divide error1debug exception2null interrupt3breakpoint4INTO-detected overflow5bound range exception6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check18machine check	vector number	description		
2null interrupt3breakpoint4INTO-detected overflow5bound range exception6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	0	divide error		
2null interrupt3breakpoint4INTO-detected overflow5bound range exception6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	1	debug exception		
3breakpoint4INTO-detected overflow5bound range exception6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	2	- · ·		
4INTO-detected overflow5bound range exception6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	3			
6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	4			
6invalid opcode7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	5	bound range exception		
7device not available8double fault9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	6	•		
9coprocessor segment overrun (reserved)10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check				
10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	8	double fault		
10invalid task state segment11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	9	coprocessor segment overrun (reserved)		
11segment not present12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	10			
12stack fault13general protection14page fault15(Intel reserved, do not use)16floating-point error17alignment check	11	-		
14page fault15(Intel reserved, do not use)16floating-point error17alignment check	12	•		
14page fault15(Intel reserved, do not use)16floating-point error17alignment check	13	general protection		
15(Intel reserved, do not use)16floating-point error17alignment check				
16floating-point error17alignment check	page and			
17 alignment check				
Ũ	17	5 F		
	18			
19Đ31 (Intel reserved, do not use)	19Đ31			
32Đ255 maskable interrupts				

Operating System Concepts

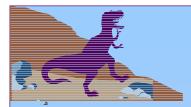


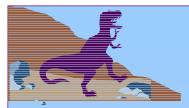
Direct Memory Access

- Used to avoid programmed I/O for large data movement
- Requires DMA controller
- Bypasses CPU to transfer data directly between I/O device and memory

Six Step Process to Perform DMA Transfer

Application I/O Interface


- I/O system calls encapsulate device behaviors in generic classes
- Device-driver layer hides differences among I/O controllers from kernel
- Devices vary in many dimensions
 - Character-stream or block
 - Sequential or random-access
 - Sharable or dedicated
 - Speed of operation
 - read-write, read only, or write only


A Kernel I/O Structure

	kernel						
software	kernel I/O subsystem						
	SCSI device driver	keyboard device driver	mouse device driver	•••	PCI bus device driver	floppy device driver	ATAPI device driver
Θ	SCSI device controller	keyboard device controller	mouse device controller	•••	PCI bus device controller	floppy device controller	ATAPI device controller
hardware	_		_	_	_		
hê	SCSI devices	keyboard	mouse	•••	PCI bus	floppy-disk drives	ATAPI devices (disks, tapes, drives)

Characteristics of I/O Devices

aspect	variation	example	
data-transfer mode	character block	terminal disk	
access method	sequential random	modem CD-ROM	
transfer schedule	synchronous asynchronous	tape keyboard	
sharing	dedicated sharable	tape keyboard	
device speed	latency seek time transfer rate delay between operations		
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk	

Block and Character Devices

- Block devices include disk drives
 - Commands include read, write, seek
 - Raw I/O or file-system access
 - Memory-mapped file access possible
- Character devices include keyboards, mice, serial ports
 - Commands include get, put
 - Libraries layered on top allow line editing



Network Devices

- Varying enough from block and character to have own interface
- Unix and Windows NT/9i/2000 include socket interface
 - Separates network protocol from network operation
 - Includes select functionality
- Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

Clocks and Timers

Provide current time, elapsed time, timer

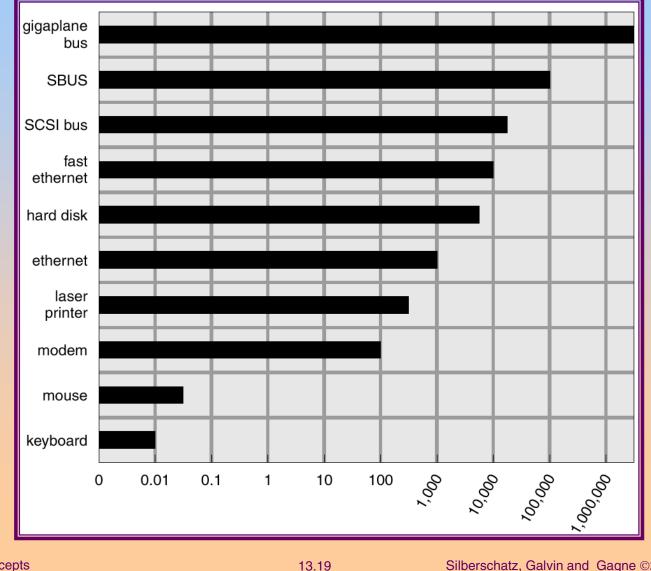
- If programmable interval time used for timings, periodic interrupts
- ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers



Blocking and Nonblocking I/O

Blocking - process suspended until I/O completed

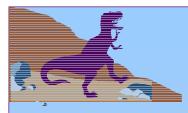
- Easy to use and understand
- Insufficient for some needs
- Nonblocking I/O call returns as much as available
 - User interface, data copy (buffered I/O)
 - Implemented via multi-threading
 - Returns quickly with count of bytes read or written
- Asynchronous process runs while I/O executes
 - Difficult to use
 - I/O subsystem signals process when I/O completed


Kernel I/O Subsystem

Scheduling


- Some I/O request ordering via per-device queue
- Some OSs try fairness
- Buffering store data in memory while transferring between devices
 - To cope with device speed mismatch
 - To cope with device transfer size mismatch
 - To maintain "copy semantics"

Sun Enterprise 6000 Device-Transfer Rates


Operating System Concepts

Kernel I/O Subsystem

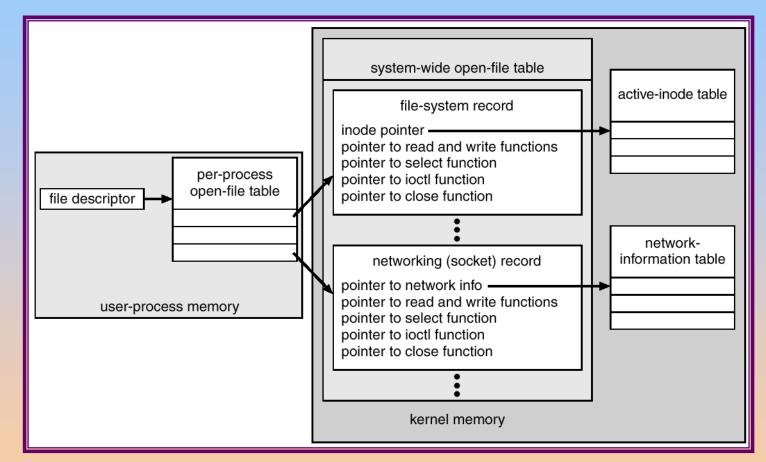
- Caching fast memory holding copy of data
 - Always just a copy
 - Key to performance
- Spooling hold output for a device
 - If device can serve only one request at a time
 - i.e., Printing
- Device reservation provides exclusive access to a device
 - System calls for allocation and deallocation
 - Watch out for deadlock

Error Handling

OS can recover from disk read, device unavailable, transient write failures

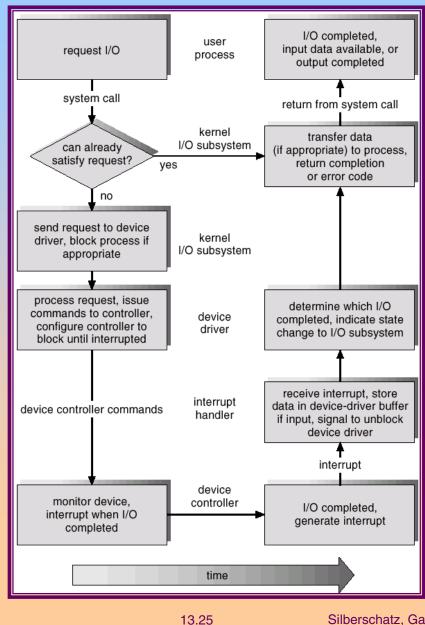
Most return an error number or code when I/O request fails

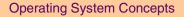
System error logs hold problem reports


Kernel Data Structures

- Kernel keeps state info for I/O components, including open file tables, network connections, character device state
- Many, many complex data structures to track buffers, memory allocation, "dirty" blocks
- Some use object-oriented methods and message passing to implement I/O

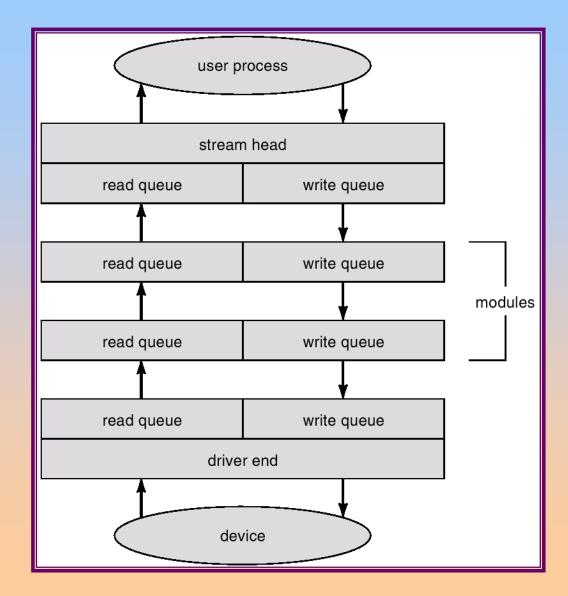
UNIX I/O Kernel Structure


I/O Requests to Hardware Operations


Consider reading a file from disk for a process:

- Determine device holding file
- Translate name to device representation
- Physically read data from disk into buffer
- Make data available to requesting process
- Return control to process

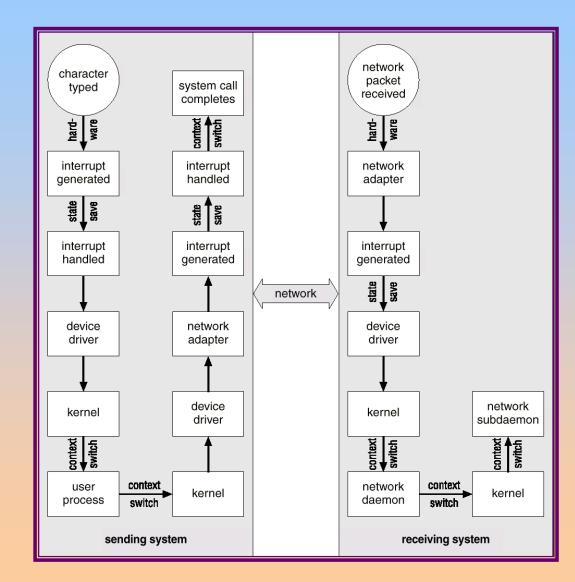
Life Cycle of An I/O Request


STREAMS

STREAM – a full-duplex communication channel between a user-level process and a device

- A STREAM consists of:
 - STREAM head interfaces with the user process
 - driver end interfaces with the device
 - zero or more STREAM modules between them.
- Each module contains a **read queue** and a **write queue**
- Message passing is used to communicate between queues

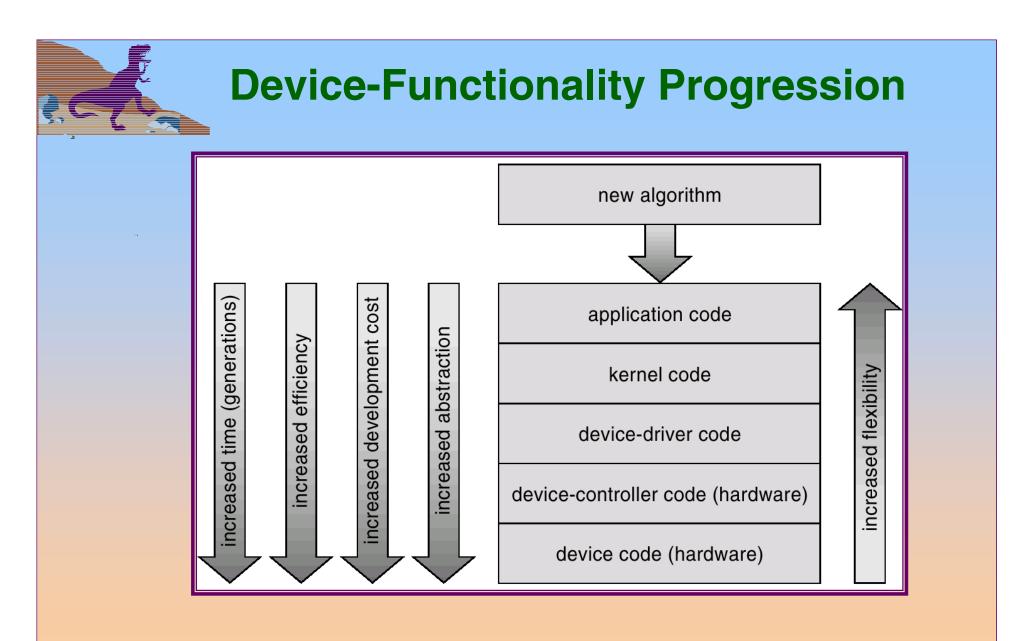
The STREAMS Structure


Performance

I/O a major factor in system performance:

- Demands CPU to execute device driver, kernel I/O code
- Context switches due to interrupts
- Data copying
- Network traffic especially stressful

Intercomputer Communications



Improving Performance

- Reduce number of context switches
- Reduce data copying
 - Reduce interrupts by using large transfers, smart controllers, polling
 - Use DMA
 - Balance CPU, memory, bus, and I/O performance for highest throughput

