
An Overview of Software Process

2

CMSC 345, Version 1/12

S. Mitchell

Objectives

 To introduce the general phases of the

software development life cycle (SDLC)

 To describe various generic software process

models and discuss their pros and cons

 To introduce some specific software

processes

 To discuss software process assessment and

improvement

3

CMSC 345, Version 1/12

S. Mitchell

Requirements

system services
and constraints

“What”

Generalizing the Software Development Life Cycle (SDLC)

 Specify system scope

 Elicit and specify system services

 Elicit and specify system constraints

 Begin designing the user interface (isn’t this design?!)

 Establish deliverables

 Discuss open issues

 Document

 Verify

4

CMSC 345, Version 1/12

S. Mitchell

Requirements Design

system services
and constraints

“What”

“How”

system structure
intended

Generalizing the Software Development Life Cycle (SDLC)

 Overall architectural design

 Component design

 Component interface design

 Algorithm design

 Data structure design

 Hardware and software decisions

 Discuss open issues

 Document

 Verify

5

CMSC 345, Version 1/12

S. Mitchell

Requirements Design

Implementation

system services
and constraints

“What”

“How”

system structure
intended

code

Generalizing the Software Development Life Cycle (SDLC)

 Coding

 Successful compilation of code units

 Unit testing

 Code inspection

 Document

6

CMSC 345, Version 1/12

S. Mitchell

Requirements Design

Implementation Testing

system services
and constraints

“What”

“How”

system structure
intended

code

final product

Generalizing the Software Development Life Cycle (SDLC)

 Component testing

 Integration testing

 Subsystem testing

 System testing

 Acceptance testing

 Document

 Deployment (actually its own phase)

7

CMSC 345, Version 1/12

S. Mitchell

Requirements Design

Implementation Testing

Maintenance

system services
and constraints

“What”

“How”

system structure
intended

code

final product

Generalizing the Software Development Life Cycle (SDLC)

 Bug fixes

 Refactoring

 Upgrades

 Document

8

CMSC 345, Version 1/12

S. Mitchell

Software Process Models

 An abstract representation of how the

SDLC phases can be addressed

 Major models:

Waterfall

Spiral

Iterative and Incremental Development (IID)

Prototyping

 Evolutionary

 Throwaway

9

CMSC 345, Version 1/12

S. Mitchell

Waterfall Model

Requirements

Design

Implementation

Maintenance

Testing

Winston Royce, 1970

10

CMSC 345, Version 1/12

S. Mitchell

Observations

 Contains all phases of the SDLC

 May have to return to the previous phase

 Still widely used, especially on very large

projects

Requirements

Design

Implementation

Maintenance

Testing

11

CMSC 345, Version 1/12

S. Mitchell

Spiral Model

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code

Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Barry Boehm, 1988

12

CMSC 345, Version 1/12

S. Mitchell

Observations

 Each loop in the spiral represents a phase in the

process.

 Is iterative

 Risks are explicitly assessed and resolved throughout

the process.

 Uses prototyping Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code

Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

13

CMSC 345, Version 1/12

S. Mitchell

Iterative and Incremental Development (IID)

Requirements

Implementation

Design

Testing

Maintenance

Determine the

“pieces”

Develop each

“piece,” adding

to the previous

ones
Final system

emerges

14

CMSC 345, Version 1/12

S. Mitchell

Observations

 Contains all phases of the SDLC

 Development and delivery is broken down into functional
increments (“pieces”)

 The increments are prioritized

 Is an iterative, incremental process

 Common to deploy at the end of each iteration

Requirements

Implementation

Design

Testing

Maintenance

Determine the

“pieces”

Develop each

“piece,” adding

to the previous

ones
Final system

emerges

15

CMSC 345, Version 1/12

S. Mitchell

Prototyping

Requirements

Implementation

Design

Testing

Design

Implementation

Testing

Maintenance

Prototyping

(waterfall,

spiral, IID,

etc.)

Final System

Development

(waterfall,

spiral, IID,

etc.)

Throw prototype

away?

16

CMSC 345, Version 1/12

S. Mitchell

Observations

 Contains all phases of the SDLC

 Terrific requirements elicitation and validation technique

 There is always a “working” model (prototype) of the
final system

 Is an iterative process

 Prototype can be thrown away (throwaway
prototyping) or evolved into the final system
(evolutionary prototyping)

Requirements

Implementation

Design

Testing

Design

Implementation

Testing

Maintenance

Prototyping

(waterfall,

spiral, IID,

etc.)

Final System

Development

(waterfall,

spiral, IID,

etc.)

Throw prototype away?

17

CMSC 345, Version 1/12

S. Mitchell

Software Processes

 Rational Unified Process (RUP) (’90’s)

 Agile processes (late ’90’s)

Scrum

Extreme Programming (XP)

 Customized

18

CMSC 345, Version 1/12

S. Mitchell

Rational Unified Process (3)

 Rational Unified Process (RUP)

Rational Software Corporation, now owned by

IBM

 “Three Amigos”

 Grady Booch

 James Rumbaugh

 Ivar Jacobson

A popular type of Unified Process (UP)

19

CMSC 345, Version 1/12

S. Mitchell

Rational Unified Process
Rational Unified

Process (1)

20

CMSC 345, Version 1/12

S. Mitchell

Rational Unified Process (UP) (2)
 Set of activities (workflows), artifacts (e.g., documents, diagrams,

code), and roles (e.g., architect, code reviewer, tester)

 Customizable generic process framework

 Characteristics

 Use case driven (functional requirements)

 Architecture-centric (system structure)

 Iterative (cycles through “workflows”)

 Incremental (incremental deliveries of a specified set of use

cases)

 Makes extensive use of the Unified Modeling Language (UML)

21

CMSC 345, Version 1/12

S. Mitchell

Agile Processes
 Agile Manifesto (2001)

 Emphasizes “lightweight” processes

 Values
 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 www.agilemanifesto.org

 SD Magazine, The Agile Manifesto, August 2001

 Some agile processes
 Scrum

 Extreme Programming (XP) (Is it a process?)

22

CMSC 345, Version 1/12

S. Mitchell

Scrum (1)

Rugby – A way of restarting the game after an

infringement or after the ball goes out of play

23

CMSC 345, Version 1/12

S. Mitchell

Scrum (2) [Reference: Schwaber & Beedle]

 “Scrum is superimposed on and encapsulates whatever engineering
practices already exist.”

 Roles
 Scrum Master

 Responsible for ensuring that Scrum values, practices, and rules are
enacted and enforced

 Represents management and the team to each other

 Responsible for the success of the Scrum

 Product Owner
 Solely controls the Product Backlog

 Scrum Team
 Commits to achieving a Sprint goal

 Accorded full authority to do whatever it decides is necessary to achieve the
goal

 Responsible for doing all of the analysis, design, coding, testing, and user
documentation

 Self-organizing, cross-functional

 Stakeholders
 Customers, vendors, others

24

CMSC 345, Version 1/12

S. Mitchell

Scrum (3)

 Some Tasks
 Daily Scrums

 What the team has accomplished since the last meeting

 What it is going to do before the next meeting

 What obstacles are in its way

 30-day Sprints
 Sprint planning meeting

 Sprint goal

 End-of-Sprint review

 Some Artifacts
 Product Backlog

 An evolving, prioritized queue of business and technical functionality that
needs to be developed into a system.

 Release Backlog
 The subset of the Product Backlog that is selected for a release.

 Sprint Backlog
 Tasks that the Scrum Team has devised for a Sprint.

25

CMSC 345, Version 1/12

S. Mitchell

Extreme Programming (XP) (1)

 Basic principles (Beck)

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

26

CMSC 345, Version 1/12

S. Mitchell

Extreme Programming (XP) (2)

 Practices
 The planning game

 Small releases

 Metaphor

 Simple design

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

27

CMSC 345, Version 1/12

S. Mitchell

Customized Processes

 Sometimes (usually?) it’s best to “pick and

choose”

 Questions to ask:

Is there a required process?

Are the requirements well-understood?

What else? (Think about this on your own.)

28

CMSC 345, Version 1/12

S. Mitchell

Assessing Process (1)

 Software “crisis” in the 1960’s, ’70’s, ’80’s
 Over budget

 Over schedule

 Poor quality

 Software Engineering Institute (SEI)
 Carnegie Mellon University

 Federally-funded, non-profit research and
development center

 Consortium of academia, government, and industry

 Mission: to “advance the practice of software
engineering” (from www.sei.cmu.org)

29

CMSC 345, Version 1/12

S. Mitchell

Assessing Process (2)

 SEI Capability Maturity Model (CMM), 1991
 Provides guidance for software process improvement

 Also a method for assessing the maturity of an organization’s
software process

 Capability Maturity Model Integration (CMMI), 2002
 Successor to CMM

 Version 1.2, released August 2006

 Five levels of process “maturity”
• Incomplete

1. Initial (ad hoc)

2. Managed (can repeat earlier successes)

3. Defined (standardized and documented process)

4. Quantitatively Managed (software process metrics gathered)

5. Optimizing (continuous process improvement)

 Is not a specific process

 Is process-independent

30

CMSC 345, Version 1/12

S. Mitchell

Assessing Process (3)

 Some government agencies and other
organizations require contractors to have
achieved a specific minimal CMMI level

 Other standards and certifications:
 ISO 9000 (International Organization for

Standardization)
 A family of standards

 Can be certified as “ISO 9000 compliant”

 Six Sigma
 Originally developed by Motorola

 Origins in quality (defect) control in manufacturing

 Various certifications

31

CMSC 345, Version 1/12

S. Mitchell

CMSC 345 Process (1)

 Linear process. Why?

 First time through the entire life cycle

 Semester is very short

 I must give you hard deadlines

 Probably will have to integrate some iteration

into the process

 Prototyping strongly recommended

 For requirements elicitation

 Keep your customer informed (and happy!)

32

CMSC 345, Version 1/12

S. Mitchell

References (1)

 Boehm, Barry, A Spiral Model of Software Development
and Enhancement, IEEE Computer, 21(5):61-72, May
1988.

 Beck, K., Extreme Programming Explained. 2000, New
York: Addison-Wesley.

 Capability Maturity Model: Guidelines for Improving the
Software Process, ed. C.M.U. Software Engineering
Institute. 1995, New York: Addison-Wesley.

 Fowler, M. and J. Highsmith, The Agile Manifesto, in
Software Development Magazine, August 2001.

 International Organization for Standardization,
http://www.iso.ch/iso/en/ISOOnline.frontpage

 Jacobson, I., G. Booch, and J. Rumbaugh, The Unified
Software Development Process 1999, New York:
Addison-Wesley.

33

CMSC 345, Version 1/12

S. Mitchell

References (2)

 Kruchten, P., The Rational Unified Process: An Introduction. 3rd ed.
2003, New York: Addison-Wesley.

 Manifesto for Agile Software Development, www.agilemanifesto.org

 Royce, Winston, Managing the Development of Large Software
Systems: Concepts and Techniques, in WESCON Technical
Papers, 1970, reprinted in The Proceedings of the Ninth
International Conference on Software Engineering, 1987, pp. 328-
338.

 Scott, K., The Unified Process Explained 2001, New York: Addison-
Wesley.

 Schwaber, K. and M. Beedle, Agile Software Development with
SCRUM. 2001, Prentice Hall.

 Software Engineering Institute (SEI), www.sei.cmu.edu

 Software Engineering Institute CMMI Website,
http://www.sei.cmu.edu/cmmi/

