
Verification and Validation

2 CMSC 345, Version 1/11

Objectives

 To introduce software verification and

validation and to discuss the distinction

between them

 To describe the code inspection process

and its role in V & V

3 CMSC 345, Version 1/11

Verification vs. Validation

 Verification

 "Are we building the product right?"

 The software should conform to its specification.

 Validation

 "Are we building the right product?"

 The software should do what the user really requires.

How could a system possibly pass verification, but

not validation?

4 CMSC 345, Version 1/11

The V&V Process

 Has two principal objectives

 The discovery of defects in a system

 The assessment of whether or not the system is

usable in an operational situation

 Is a whole life-cycle process

 Examples

 Peer document reviews

 Customer document reviews

 SDD requirements matrix

 Code inspections

 Customer meetings

 Prototyping

Verification

Verification and Validation

Verification

Verification

Validation

Validation
Mainly verification

or validation? Or

both?

5 CMSC 345, Version 1/11

V&V Goals

 V&V should establish confidence that the

software is fit for its purpose.

This does not mean completely free of

defects.

Rather, it must be good enough for its

intended use.

6 CMSC 345, Version 1/11

V&V Confidence

Depends on:

 System purpose

 The level of confidence depends on how critical the

software is to an organization (e.g. safety critical).

 User expectations

 Users may have low expectations of certain kinds of

software.

 Marketing environment

 Getting a product to market early may be more

important than finding defects in the program.

7 CMSC 345, Version 1/11

Code Inspection

 Visually examine the source code

 Goals
 To discover logical anomalies and defects. Examples:

 uninitialized variables

 unreachable code

 infinite loops

 To confirm compliance with coding and commenting
conventions

 Intended for defect detection, not correction

 Very effective technique for discovering errors

 Saves time and money
 The earlier in the development process an error is

found, the better.

8 CMSC 345, Version 1/11

Inspection Pros

 Many different defects may be discovered

in a single inspection

With testing, one defect may mask another so

that several executions/tests are required.

 Inspections reuse domain and

programming knowledge

Reviewers are likely to have seen the types of

errors that commonly arise.

9 CMSC 345, Version 1/11

Inspection and Testing

 Inspection and testing are complementary

techniques.

 Inspection can check conformance with a

specification (verification), but not

conformance with the customer’s real

requirements.

Testing can do this (validation).

 Inspections cannot check non-functional

characteristics.

10 CMSC 345, Version 1/11

Inspection Preparation

 A precise specification must be available.

 Team members must be familiar with the

organization’s coding and commenting

standards.

 Syntactically correct code must be available.

 An error checklist should be prepared.

 Management must accept that inspection will

increase costs early in the software process.

11 CMSC 345, Version 1/11

Something to Consider …

A manager decides to use the reports of

program inspections as an input to the

staff appraisal process. These reports

show who made and who discovered

program errors.

• What do you think about this practice?

• Might this make a difference in the

inspection process itself?

12 CMSC 345, Version 1/11

Inspection Procedure

 The inspection procedure is planned.

 A system overview is presented to the inspection

team.

 Code and associated documents are

distributed to the inspection team in advance.

 Inspection takes place and all discovered errors

are noted.

 All modifications are made to repair discovered

errors.

 Re-inspection may or may not be required.

13 CMSC 345, Version 1/11

Inspection Teams

 Made up of:

Author of the code being inspected

 Inspector who finds errors, omissions, and
inconsistencies

Reader who reads the code to the team

Moderator who chairs the meeting

Scribe who makes detailed notes regarding
errors

 Roles may vary from these (e.g., Reader).

 Multiple roles may be taken on by the same
member.

14 CMSC 345, Version 1/11

Inspection Checklist

 Checklist of common errors is used to

drive the inspection

 Is programming language dependent

How would a C or Phython

checklist differ from a Java

checklist?

15 CMSC 345, Version 1/11

Category Inspection Check
Data Are all variables initialized before they are

used?

Have all constants been named?

Control For each conditional statement, is the

condition correct?

Will each loop terminate?

In case statements, are all possible cases

accounted for?

Input/output Are all input variables used?

Are all output variables assigned a value

before they are output?

Interface Do formal and actual parameters match in:

 - number?

 - data type?

 - what they represent?

Exception management Have all possible error conditions been taken

into account?

Sample of a Partial Inspection Checklist

Ian Sommerville, Software Engineering, 6th ed.

16 CMSC 345, Version 1/11

Automated Static Analysis

 Static analyzers are software tools for

source text processing.

They parse the program text and try to

discover potentially erroneous conditions.

They find many of the errors relevant to code

inspection.

 Very effective as an aid to inspections. A

supplement to, but not a replacement for,

inspections.

17 CMSC 345, Version 1/11

Fault Class Static Analysis Check
Data Undeclared variables

Variables used before initialization

Variables declared but never used

Possible array bounds violations

Control Unreachable code

Input/Output Variables output twice with no intervening

assignment

Interface Parameter type mismatches

Parameter number mismatches

Non-usage of the results of functions

Uncalled functions

Storage management Unassigned pointers

Ian Sommerville, Software Engineering, 6th ed.

Sample Static Analysis Checks

LINT Static Analysis

Example

138% more lint_ex.c

#include <stdio.h>

printarray (Anarray)

 int Anarray;

{

 printf(“%d”,Anarray);

}

main ()

{

 int Anarray[5]; int i; char c;

 printarray (Anarray, i, c);

 printarray (Anarray) ;

}

139% cc lint_ex.c

140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set

lint_ex.c(10): warning: i may be used before set

printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) ::

lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) ::

lint_ex.c(11)

printf returns value which is always ignored

Ian Sommerville, Software Engineering, 6th ed. CMSC 345, Version 1/11 18

19 CMSC 345, Version 1/11

References

Sommerville, Ian, Software

Engineering, 6th ed, 2000. New York:

Addison Wesley.

