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1 Introduction

The average binary search tree supports insertion, deletion, and find operations
in O(lgn) time. However, there are worst case trees for which these operations
are in O(n). One approach to avoiding the worst case behavior is to require
that the tree always remain balanced. The AVL tree is one such balanced tree.
Balanced trees guarantee O(lgn) time per operation but do so at the cost of
a high constant of proportionality. AVL trees adjust their structure after an
insertion or deletion operation if necessary to maintain balance. They do not
adjust their structure in response to a find operation.

Splay trees are “self-adjusting” binary search trees in which the adjustment
is done on the basis of the history of accesses rather than in an attempt to
maintain an explicit balance. After access, a tree node is moved to the root by
a sequence of rotations called “splaying.” No balance information need be stored
in the nodes and, in general, splay trees are not balanced. The most recently
accessed nodes in a splay tree will tend to be close to the root. Accessing these
nodes is less expensive than accessing nodes further down the tree. Because of
data locality effects, having the most recently accessed nodes near or at the root
can be a big gain.

The major point about splay trees is that the amortized performance of a
sequence of m operations is O(mlgn). n is the total number of insertions (the
maximum size attainable by the tree during the sequence of m operations).
Any individual operation in the sequence could be as costly as O(n); there is no
guarantee that a particular operation in the sequence will be efficient. Compare
this with the performance of a sequence of operations in an AVL tree. Since
each operation on the AVL tree is in O(lgn), the sequence of m operations
will be in O(mlgn). Splay trees have the same asymptotic performance over a
sequence of operations as do balanced trees. In the splay tree, some operations
in the sequence may be inefficient, but other operations will be super-efficient
to make up for them.

So what’s a sequence of operations? It’s any sequence of insert, remove,
or find operations performed in building and manipulating a splay tree from
scratch. There are some constraints, of course. For example, the k-th deletion
must have been preceded by at least k insertions.



2 Tree Operations

The insert operation in a splay tree works by first doing a normal binary-search
tree insertion, then splaying the inserted node. This puts the inserted node at
the root. If the insertion fails because a duplicate element is already in the tree,
the node holding the duplicate is splayed.

The find operation searches the splay tree for the element sought. If found,
that node is splayed to the root. If not found, the last node encountered on the
search path (the parent of the non-existent element) is splayed to the root.

The remove operation, as in regular binary-search trees, removes the current
element. In a splay tree, remove involves three splaying operations. The current
node is splayed to the root, producing a new splay tree T'. Let 71, and T be
the left and right subtrees of T'. Disconnect these subtrees from 7', then splay
the largest element in 77, and the smallest element in Tg, after which 7, will
have no right subtree and Tg will have no left subtree. Now, form a new tree T'
by making Tr the right subtree of Ty, (or vice-versa, if T}, is empty). This new
tree is the original tree after the deletion.

3 Overview of the Splaying Operation
A Dbinary tree is splayed at a node X by traversing the tree from X to the root,
performing sequences of single rotations along the way. The following splay

operation is repetitively applied, beginning at node X, until X is at the root.

1. If X is root, do nothing.

2. If X has no grandparent (i.e., the parent of X is root), rotate X about its
parent. This will make X be root. See Figure 1.
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Figure 1: Node Has No Grandparent




3. If X has a grandparent:

(a) If X and its parent are both left-children or both right-children, rotate
the parent about the grandparent, then rotate X about its parent. See
Figure 2.
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Figure 2: Node and Parent are Same Type



(b) If X and its parent are opposite-type children (one is left, the other is
right) rotate X about its parent, then rotate X about its new parent
(i.e., its former grandparent). See Figure 3.
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Figure 3: Node and Parent are Opposite Type

4 Examples

Figure 4 shows the splay tree resulting from insertion of the Integers 1..4 in
order. Note that the sequential insertions resulted in the same type of long tree
that would have been obtained with ordinary binary search trees. In ordinary
binary search trees, each insertion in the sequence of four insertions would have
taken O(n) time. Thus, the entire sequence of operations would have taken
O(n?). This is not the case with the splay tree. Notice that each insertion was
done just below the root because splaying moved the newly inserted node to
the root. Thus, this particular sequence of four insertions was done in O(1) per
operation, for a total of O(n) for the entire sequence.

The last tree shown in Figure 4 results from performing a find operation
on the node with element 1.

5 Implementation of Splay Trees

Splay trees are implemented as extensions of ordinary binary search trees. The
efficiency of the splaying operation depends heavily on the ability to find the
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Figure 4: Insertion in Order

parent of a node. This can be done in O(1) time (at the cost of O(n) additional
storage) by having each node store a reference to its parent. Alternatively,
parents can be stored on a stack during recursive descent of the tree. This
complicates the code somewhat but requires only O(depth) additional storage.

Splaying takes place at a particular node, so a splay method can be added
as a member function to the node class.

5.1 The find Operation

The find operation searches for a node with a given key, starting from a given
node, usually the root of the tree. This is the same type of search as is done in
an ordinary binary search tree. In a splay tree, the search is followed by a splay
operation. If the search succeeds, the node containing the key is splayed. If the
search fails, the last node visited is splayed.

5.2 The insert Operation

Insertion in a splay tree is done in precisely the same way as in an ordinary
binary search tree. This insertion method does not allow duplicate elements
to be inserted. If the element to be inserted is already in the tree, then the



insertion is not done, but the node holding the duplicate element is splayed. If
the insertion succeeds, then the newly-inserted node is splayed.

5.3 The remove Operation

The remove operation for a splay tree differs markedly from that in an ordinary
BST. In fact, it’s a lot simpler. If the item to be deleted is not in the tree,
the node last visited in the search for it is splayed and we are done. On the
other hand, if the item is in the tree, its node is splayed and then deletion
occurs as described below. In either event, a £ind for the item will result in the
appropriate node being splayed to the root.

Let’s look at the case in which the item is in the tree. The splay that resulted
from the find operation puts that item’s node at the root. In general, the node
has both left and right children. Do the following operations:

1. Disconnect the left and right subtrees from the root. Call these T, and
Tr, respectively. Discard the root node.

2. Splay the maximum item in Ty. This will result in the root of T, having
no right child. (The largest element is at the root, so the root has no
larger elements - no right subtree.)

3. Splay the minimum item in Tg. This will result in the root of T having
no left child. (The smallest element is at the root, so the root has no
smaller elements - no left subtree.)

4. All the elements in 7', are smaller than the elements in Tr. Make Tg be
the right subtree of the root of Ty, (or vice-versa).

Notice that there are three splays done.

1. The splay done when searching for the item in the tree.
2. The splay done in the left subtree T7,.

3. The splay done in the right subtree Tg.

There are no “cases” to worry about as in the ordinary BST deletion method.

6 Performance Considerations

The insert operation uses ordinary BST insertion, then splays the inserted node
to the root. Clearly the insertion portion of this operation has the same asymp-
totic behavior as that for BSTs, namely O(depth). What about the splaying
portion? If the work required at each step of the splay is independent of the
number of nodes in the tree, the splay portion will be in O(1) per step. The
number of steps is bounded by the depth of the tree, so the splaying portion
would also be in O(depth).

Well, is the splaying portion independent of the number of nodes in the tree?
Look at what’s involved:



1. Find the parent of the node and perhaps its parent too.
2. Determine if the node and its parent are the same type (left or right).
3. Rearrange the local structure of the tree.

Determining the type and rearranging the structure are local operations
involving only a few nodes (the node, its parent, its grandparent). These oper-
ations must be in O(1).

The cost of determining the parent of a node depends on how the parent is
found. If each node stores a reference to its parent (or if a stack of parents is
maintained), the cost is in O(1), keeping the splay operation in O(depth).

6.1 Amortized Cost

For the average BST, d = O(lgn), so on average, operations on BSTs are in
O(lgn). A sequence of m operations (insert, remove, and find) will cost
O(mlgn).

The situation with splay trees is different. The structure of the tree is
changed with each operation, so the notion of average is not relevant. A tech-
nique known as “amortized analysis” is used to show that over a sequence of
m operations (starting with an empty tree) the cost of the sequence will be
O(mlgn). This is the same cost as that for BSTs so overall performance is
the same. What’s different is that the splay tree does not guarantee O(lgn)
performance for each operation.

7 A Final Example

Figure 5 shows a splay tree before and after node ¢ ‘X’ is accessed by an find
operation.
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Figure 5: A Splaying Example




