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Overview
• Big 4
• Extra Constructor Syntax and Accessors
• Call-by-Value vs. Call-by-Reference
• Using Const
• Dynamic Allocation
• Templates
• Object Relationships
• Inheritance
• Overloading vs. Overriding
• Exceptions
• Standard Template Library
• Makefiles
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Big 4

• Compiler automatically provides the 
following methods
– Destructor
– Copy Constructor
– Assignment Operator
– Default Constructor (unless you explicitly write 

any constructor)
• Sometimes you can use the default 

behavior, sometimes you can not
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Big 4
• Destructor

– Automatically called when object goes out of scope
– Typically frees up resources

• For your projects: free dynamically allocated memory
• In the real world: close open files & close network and 

database connections

• Copy Constructor
– Constructs an object which is a copy of the same type 

of object
– Called transparently when :

• An object is passed by value
• An object is returned by value
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Big 4
• Assignment Operator (operator=)

– Assigns one object equal to another after they have 
both been previously constructed

– Applies operator= to each data member which may 
or may not be what you want

• What about pointers/dynamically allocated memory

• Default (zero argument) Constructor
– Provided if and only if you do not explicitly provide a 

constructor of your own
– Useful so that you can treat Object as if it were a 

primitive
• What if we wanted an array of Objects, but provided no 

default constructor?
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Basic Class Syntax
class IntCell
{

public:
IntCell( ) { 

storedValue = 0; 
}

IntCell( int initialValue ) { 
storedValue = initialValue; 

}

int read( ) { 
return storedValue; 

}

void write( int x ) { 
storedValue = x; 

}

private:
int storedValue;

};
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Extra Constructor Syntax 
and Accessors

• Default Parameters
– Can be used create multiple constructors of a method yet writing

it once
– Used to provide default values in the event parameter is not 

provided
• Initializer List

– Used to directly initialize data members directly
– Some cases it is required
– Order needs to match order of declarations to avoid compiler 

errors
• explicit Constructors

– Good habit to make all 1 argument constructors explicit to avoid
behind the scenes type conversion
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Call-by-Value vs. 
Call-by-Reference

• Call-by-Value:
– Passes a copy of the parameter to the function as if declared as 

a local variable
– Changes made in function are local to function only – you are 

modifying a copy
– Can be an expression that is a parameter (i.e. 5+5) 

• Call-by-Reference:
– Passes an alias or handle to parameter to the function –

references to the parameter are to the original variable in the 
calling scope

– Changes made are in the function are on the original variable
– Can not have an reference to something that is anonymous (i.e. 

not explicitly stored in a variable such as an expression)
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Using Const

• Parameters and objects which are 
designated as const cannot be changed

• If a parameter doesn’t need to change 
prepend the parameter with const

• Use const with methods that do not need 
to modify any part of the class
– i.e. accessors
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Dynamic Allocation

• Objects can be dynamically allocated at run-time 
using new
– Referenced via a pointer to the type
– Used when things need to change size dynamically at 

run-time
• C++ does not have garbage collection – that 

means everything that is allocated using new
needs to be freed using delete
– If you allocate an array using: foo = new int[n]
– then it needs to be freed using: delete[ ] foo
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Templates
• Used heavily for container classes

– i.e. classes that hold collections of objects
• Used to make a class or function generic

– Don’t rewrite the same code over for different types
• For the g++ compiler, the source code and the 

prototypes must be in the same file
– The easiest solution to accomplish this (and still have separate

.h and .cpp files) is to #include the .cpp file at the bottom of the 

.h file
• Never manually compile template classes

– It is automatically compiled by code that references it
• See IntCell / MemCell slides
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Object Relationships
“Uses a”

– An object uses another object by calling a public 
method of that object 

“Has a”
– Implemented using composition (aggregation)
– i.e. object Foo has an object Bar as a data member

“Is a”
– An object builds off of a base object to extend its 

functionality (inheritance)
– Typically derived class is a specialized version of its 

base class
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Inheritance
• Single Inheritance 

– Use when multiple objects are specific 
versions of some generic thing

– Base class / Derived class
• Multiple Inheritance

– Debate over worth of Multiple Inheritance
• Some newer object oriented languages such as 

Java & C# for example ditched the idea (although 
they both support multiple interfaces)

– The “Diamond Problem”
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Overloading vs. Overriding

• Overloading is when multiple versions 
(distinguishable by the parameter list –
a.k.a. signature) of a method/function exist
– foo(), foo(int), foo(char), foo(int*, string, float)

• Overriding is when a method in a base 
class is shadowed by a method with the 
same name in the subclass
– Assuming ColorBox extends Box: then 

ColorBox::paint() overrides Box::paint()
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Exceptions

• The author of a library/class can detect 
run-time errors, but does not in general 
know what to do with them

• The user of a library/class can cope with 
such errors, but can not detect them 
(otherwise they would have been handled 
in the users code and not left to the library 
to find)
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Exceptions

• Notion of an exception is provided to deal 
with such problems

• General idea is that when a 
function/method encounters a problem it 
can not cope with, it throws an exception, 
hoping that its caller (indirectly or directly) 
can handle the problem
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Exception Alternatives

• Terminate the program
• Return a value representing an error

– Author does this excessively
• Return a legal value and leave the 

program/object in an illegal state
• Call a function to be supplied in case of an 

error



17

Exception Benefits

• Removes error handling code from the code that 
caused the error (less clutter)

• Makes it possible to catch all kinds of errors, 
errors of a certain type, or errors of related types 

• Usually used in situations in where the system 
can recover

• Used when the error will be dealt with by a 
different part of the program (i.e., different 
scope) from that which detected the error 
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Exception Examples
• Throwing / Catching exceptions 

– General Form

• Grouping of exceptions
• Order of catching
• Complex exceptions

try {
// code to be tried that throws an exception; 

} catch (type exception) {
// code to be executed in case of exception 

}
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Standard Template Library (STL)

• The Standard Template Library (STL) is a 
general-purpose C++ library of algorithms and 
data structures 
– Well tested and documented 

• You will most likely need to use 2 of the most 
common ones for this class
– STL string improves and simplifies strings from C
– vector acts as a dynamic array supporting operations 

that are a pain in C 
• vector is a template class – can use it to store anything
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STL String

• size( ) – get size of string
• c_str( ) – convert from string class to array of 

chars
• insert( ) and erase( ) methods
• Various find( ) methods
• Various find_last/first_of( ) methods
• substr(pos, n) method – gets portion of string
• Overloaded operators

– Assignment, equality, concatenation, subscript, etc…



21

STL Vector

• size( ) – returns number of elements in 
vector

• empty( ) – is the vector empty?
• begin( ) and end( ) – get iterators (we’ll 

learn more about iterators as the semester 
progresses)

• clear( ) – empty out a vector
• Overloaded operators for equality, 

assignment and subscripting


