
CMSC 341

C++ Review

1

Overview
• Big 4
• Extra Constructor Syntax and Accessors
• Call-by-Value vs. Call-by-Reference
• Using Const
• Dynamic Allocation
• Templates
• Object Relationships
• Inheritance
• Overloading vs. Overriding
• Exceptions
• Standard Template Library
• Makefiles

2

Big 4

• Compiler automatically provides the
following methods
– Destructor
– Copy Constructor
– Assignment Operator
– Default Constructor (unless you explicitly write

any constructor)
• Sometimes you can use the default

behavior, sometimes you can not

3

Big 4
• Destructor

– Automatically called when object goes out of scope
– Typically frees up resources

• For your projects: free dynamically allocated memory
• In the real world: close open files & close network and

database connections

• Copy Constructor
– Constructs an object which is a copy of the same type

of object
– Called transparently when :

• An object is passed by value
• An object is returned by value

4

Big 4
• Assignment Operator (operator=)

– Assigns one object equal to another after they have
both been previously constructed

– Applies operator= to each data member which may
or may not be what you want

• What about pointers/dynamically allocated memory

• Default (zero argument) Constructor
– Provided if and only if you do not explicitly provide a

constructor of your own
– Useful so that you can treat Object as if it were a

primitive
• What if we wanted an array of Objects, but provided no

default constructor?

5

Basic Class Syntax
class IntCell
{

public:
IntCell() {

storedValue = 0;
}

IntCell(int initialValue) {
storedValue = initialValue;

}

int read() {
return storedValue;

}

void write(int x) {
storedValue = x;

}

private:
int storedValue;

};

6

Extra Constructor Syntax
and Accessors

• Default Parameters
– Can be used create multiple constructors of a method yet writing

it once
– Used to provide default values in the event parameter is not

provided
• Initializer List

– Used to directly initialize data members directly
– Some cases it is required
– Order needs to match order of declarations to avoid compiler

errors
• explicit Constructors

– Good habit to make all 1 argument constructors explicit to avoid
behind the scenes type conversion

7

Call-by-Value vs.
Call-by-Reference

• Call-by-Value:
– Passes a copy of the parameter to the function as if declared as

a local variable
– Changes made in function are local to function only – you are

modifying a copy
– Can be an expression that is a parameter (i.e. 5+5)

• Call-by-Reference:
– Passes an alias or handle to parameter to the function –

references to the parameter are to the original variable in the
calling scope

– Changes made are in the function are on the original variable
– Can not have an reference to something that is anonymous (i.e.

not explicitly stored in a variable such as an expression)

8

Using Const

• Parameters and objects which are
designated as const cannot be changed

• If a parameter doesn’t need to change
prepend the parameter with const

• Use const with methods that do not need
to modify any part of the class
– i.e. accessors

9

Dynamic Allocation

• Objects can be dynamically allocated at run-time
using new
– Referenced via a pointer to the type
– Used when things need to change size dynamically at

run-time
• C++ does not have garbage collection – that

means everything that is allocated using new
needs to be freed using delete
– If you allocate an array using: foo = new int[n]
– then it needs to be freed using: delete[] foo

10

Templates
• Used heavily for container classes

– i.e. classes that hold collections of objects
• Used to make a class or function generic

– Don’t rewrite the same code over for different types
• For the g++ compiler, the source code and the

prototypes must be in the same file
– The easiest solution to accomplish this (and still have separate

.h and .cpp files) is to #include the .cpp file at the bottom of the

.h file
• Never manually compile template classes

– It is automatically compiled by code that references it
• See IntCell / MemCell slides

11

Object Relationships
“Uses a”

– An object uses another object by calling a public
method of that object

“Has a”
– Implemented using composition (aggregation)
– i.e. object Foo has an object Bar as a data member

“Is a”
– An object builds off of a base object to extend its

functionality (inheritance)
– Typically derived class is a specialized version of its

base class

12

Inheritance
• Single Inheritance

– Use when multiple objects are specific
versions of some generic thing

– Base class / Derived class
• Multiple Inheritance

– Debate over worth of Multiple Inheritance
• Some newer object oriented languages such as

Java & C# for example ditched the idea (although
they both support multiple interfaces)

– The “Diamond Problem”

13

Overloading vs. Overriding

• Overloading is when multiple versions
(distinguishable by the parameter list –
a.k.a. signature) of a method/function exist
– foo(), foo(int), foo(char), foo(int*, string, float)

• Overriding is when a method in a base
class is shadowed by a method with the
same name in the subclass
– Assuming ColorBox extends Box: then

ColorBox::paint() overrides Box::paint()

14

Exceptions

• The author of a library/class can detect
run-time errors, but does not in general
know what to do with them

• The user of a library/class can cope with
such errors, but can not detect them
(otherwise they would have been handled
in the users code and not left to the library
to find)

15

Exceptions

• Notion of an exception is provided to deal
with such problems

• General idea is that when a
function/method encounters a problem it
can not cope with, it throws an exception,
hoping that its caller (indirectly or directly)
can handle the problem

16

Exception Alternatives

• Terminate the program
• Return a value representing an error

– Author does this excessively
• Return a legal value and leave the

program/object in an illegal state
• Call a function to be supplied in case of an

error

17

Exception Benefits

• Removes error handling code from the code that
caused the error (less clutter)

• Makes it possible to catch all kinds of errors,
errors of a certain type, or errors of related types

• Usually used in situations in where the system
can recover

• Used when the error will be dealt with by a
different part of the program (i.e., different
scope) from that which detected the error

18

Exception Examples
• Throwing / Catching exceptions

– General Form

• Grouping of exceptions
• Order of catching
• Complex exceptions

try {
// code to be tried that throws an exception;

} catch (type exception) {
// code to be executed in case of exception

}

19

Standard Template Library (STL)

• The Standard Template Library (STL) is a
general-purpose C++ library of algorithms and
data structures
– Well tested and documented

• You will most likely need to use 2 of the most
common ones for this class
– STL string improves and simplifies strings from C
– vector acts as a dynamic array supporting operations

that are a pain in C
• vector is a template class – can use it to store anything

20

STL String

• size() – get size of string
• c_str() – convert from string class to array of

chars
• insert() and erase() methods
• Various find() methods
• Various find_last/first_of() methods
• substr(pos, n) method – gets portion of string
• Overloaded operators

– Assignment, equality, concatenation, subscript, etc…

21

STL Vector

• size() – returns number of elements in
vector

• empty() – is the vector empty?
• begin() and end() – get iterators (we’ll

learn more about iterators as the semester
progresses)

• clear() – empty out a vector
• Overloaded operators for equality,

assignment and subscripting

