CMSC 341

Makefile Review

Make Overview

* make is a program that automates the
compilation of programs whose files are
dependent on each other

* A program typically consists of several
files, and a programmer usually only works
on a few of them at a time

— Typically vast majority of files remain
unchanged and thus do not need to be
recompiled

Make Overview

* make will only recompile the files that need to be
updated (files that depend on modified files),
which is much faster than simply recompiling the
whole program each time

 make looks at the timestamps of source files
(*.C, *.H) that are required to generate an object
file (*.0)
— If a source is newer then the object file, the object file
needs to be recompiled

— Likewise if an object file is newer than the executable
it needs to be re-linked

Makefile Structure

* A makefile is a list of rules of what files are
required to generate an object or an executable
file
— File typically called makefile or Makefile

« Each rule consists of 4 parts:

— Target: the name of the object or executable to create

— Dependency List: the list of files that the target is
dependent upon

— TAB: used to set off an action

— Action(s): a list of actions to take in order to create the
target (i.e. g++ ...)

Makefile Rule

/ Target) - Dependency List)
The file to create. In this The files that are required to
case an object file: create the object file. In this
Foobar.o - Qs\e Foobar.C and Foobar.H/
\ —
Foobar.o: Foobar.C Foobar.H
g++ -ansi -Wall -c Foobar.C
<TAB> // Action(s) Y
Used to What needs to be done to create
signal what the target. In this case it is the
follows as separate compilation of Foobar.C

_ an action) __ -

A simple makefile

Projectl: Projectl.o Inventory.o Cd.o Date.o
g++ -ansi -Wall -o projl Projectl.o Inventory.o Cd.o Date.o

Projectl.o: Projectl.c Inventory.h
g++ —ansi -Wall -c Projectl.c

Inventory.o: Inventory.c Inventory.h Cd.h
g++ -ansi -Wall -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
gt++ -ansi -Wall -c Cd.c

Date.o: Date.c Date.h
gt++ -ansi -Wall -c Date.c

Target Specification

* You can automatically create any of the
targets by typing make <TARGET>

* |If you omit a target as a parameter to
make, it assumes that you want the first
target in the makefile
— This target is known as the default target and

is almost always the name of the executable
that you want to create

Dependency Graph

 Discussed In class

Makefile Macros

« Similar to a #define or alias — use when you
need the same thing over and over

« Syntax to define macro is:
— MACRO_NAME = content to be substituted for MACRO_NAME

« Benefits: easy to make changes — simply change in 1
place rather than on all targets, etc...

DIR1 = [/afs/umbc.edu/users/y/p/ypeng/pub/CMSC341/Projl/
PROJ = Projl

CC = g++

CCFLAGS = -g -ansi -Wall -I . -I $(DIR1)

OBJECTS = Projectl.o Inventory.o Cd.o Date.o

Makefile Macros

* To access a declared macro simply put
the name of the macro inside parenthesis
after a dollar sign

« Syntax to recall macro:
— $(MACRO_NAME)

Projectl: $ (OBJECTS)
$(CC) $(CCFLAGS) -o $(PROJ).c $ (OBJECTS)

Projectl.o: Projectl.c Inventory.h
$ (CC) $(CCFLAGS) -c Projectl.c

Phony Targets

* You can specify targets that do auxiliary tasks
and do not actually compile code
— Remove object and executable files
— Print source code
— Submit all code

* These tasks do not require looking at the
timestamps on files and thus it is good practice
to let make know that there is no “real” target for
a rule, and that it should just execute the action
list

10

Phony Targets

* The syntax is just like any other rule
except the rule is proceeds a .PHONY
declaration

« Syntax is: .PHONY: target

.PHONY: submit
submit:
submit cs341 $(PROJ) $ (SOURCES) Makefile *.txt

.PHONY: print
Print:
enscript -G2rE $ (SOURCES) Makefile *.txt

11

Advanced Makefile

PROJ = Projl
CcC = gt++
CCFLAGS = -g -ansi —-Wall

SOURCES = $(PROJ) .c Inventory.h Inventory.c Cd.h Cd.c Date.h Date.c
OBJECTS = $ (PROJ) .o Inventory.o Cd.o Date.o

$ (PROJ) : $OBJECTS
$(CC) $(CCFLAGS) -o $(PROJ) $ (OBJECTS)

$ (PROJ) .0o: $(PROJ) .c Inventory.h
$(CC) $(CCFLAGS) -c $(PROJ) .c

Inventory.o: Inventory.c Inventory.h Cd.h
$(CC) $(CCFLAGS) -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
$(CC) $(CCFLAGS) -c Cd.c

Date.o: Date.c Date.h
$ (CC) $(CCFLAGS) -c Date.c

.PHONY: submit
submit:
submit cs341 $(PROJ) $ (SOURCES) Makefile *.txt

.PHONY: print
Print:
enscript -G2rE $ (SOURCES) Makefile *.txt

12

Templates

* As mentioned in class you should never

explicitly compile template classes when using
g++

« What implications does this have on makefiles?

— Do not create a target for a template class

* You will never make a myTemplateClass.o object file, as
template code automatically gets compiled when it is seen

declared
— Since object files are not created, they do not be
listed in the OBJECTS target dependency list

— Do list template class files as dependencies for an

target (object) when the files that create that target
(object) reference them

13

