
CMSC 341

Makefile Review

1

Make Overview

• make is a program that automates the
compilation of programs whose files are
dependent on each other

• A program typically consists of several
files, and a programmer usually only works
on a few of them at a time
– Typically vast majority of files remain

unchanged and thus do not need to be
recompiled

2

Make Overview
• make will only recompile the files that need to be

updated (files that depend on modified files),
which is much faster than simply recompiling the
whole program each time

• make looks at the timestamps of source files
(*.C, *.H) that are required to generate an object
file (*.o)
– If a source is newer then the object file, the object file

needs to be recompiled
– Likewise if an object file is newer than the executable

it needs to be re-linked

3

Makefile Structure
• A makefile is a list of rules of what files are

required to generate an object or an executable
file
– File typically called makefile or Makefile

• Each rule consists of 4 parts:
– Target: the name of the object or executable to create
– Dependency List: the list of files that the target is

dependent upon
– TAB: used to set off an action
– Action(s): a list of actions to take in order to create the

target (i.e. g++ …)

4

Makefile Rule

Foobar.o: Foobar.C Foobar.H
g++ -ansi -Wall -c Foobar.C

Target
The file to create. In this

case an object file:
Foobar.o

Dependency List
The files that are required to
create the object file. In this
case Foobar.C and Foobar.H

<TAB>
Used to

signal what
follows as
an action

Action(s)
What needs to be done to create
the target. In this case it is the

separate compilation of Foobar.C

5

A simple makefile
Project1: Project1.o Inventory.o Cd.o Date.o

g++ -ansi -Wall -o proj1 Project1.o Inventory.o Cd.o Date.o

Project1.o: Project1.c Inventory.h
g++ -ansi -Wall -c Project1.c

Inventory.o: Inventory.c Inventory.h Cd.h
g++ -ansi -Wall -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
g++ -ansi -Wall -c Cd.c

Date.o: Date.c Date.h
g++ -ansi -Wall -c Date.c

6

Target Specification

• You can automatically create any of the
targets by typing make <TARGET>

• If you omit a target as a parameter to
make, it assumes that you want the first
target in the makefile
– This target is known as the default target and

is almost always the name of the executable
that you want to create

7

Dependency Graph

• Discussed in class

8

Makefile Macros
• Similar to a #define or alias – use when you

need the same thing over and over
• Syntax to define macro is:

– MACRO_NAME = content to be substituted for MACRO_NAME

• Benefits: easy to make changes – simply change in 1
place rather than on all targets, etc…

DIR1 = /afs/umbc.edu/users/y/p/ypeng/pub/CMSC341/Proj1/
PROJ = Proj1
CC = g++
CCFLAGS = -g -ansi -Wall -I . -I $(DIR1)

OBJECTS = Project1.o Inventory.o Cd.o Date.o

9

Makefile Macros

• To access a declared macro simply put
the name of the macro inside parenthesis
after a dollar sign

• Syntax to recall macro:
– $(MACRO_NAME)

Project1: $(OBJECTS)
$(CC) $(CCFLAGS) -o $(PROJ).c $(OBJECTS)

Project1.o: Project1.c Inventory.h
$(CC) $(CCFLAGS) -c Project1.c

10

Phony Targets

• You can specify targets that do auxiliary tasks
and do not actually compile code
– Remove object and executable files
– Print source code
– Submit all code

• These tasks do not require looking at the
timestamps on files and thus it is good practice
to let make know that there is no “real” target for
a rule, and that it should just execute the action
list

11

Phony Targets

• The syntax is just like any other rule
except the rule is proceeds a .PHONY
declaration

• Syntax is: .PHONY: target
.PHONY: submit
submit:

submit cs341 $(PROJ) $(SOURCES) Makefile *.txt

.PHONY: print
Print:

enscript -G2rE $(SOURCES) Makefile *.txt

12

PROJ = Proj1
CC = g++
CCFLAGS = -g -ansi –Wall

SOURCES = $(PROJ).c Inventory.h Inventory.c Cd.h Cd.c Date.h Date.c
OBJECTS = $(PROJ).o Inventory.o Cd.o Date.o

$(PROJ): $OBJECTS
$(CC) $(CCFLAGS) -o $(PROJ) $(OBJECTS)

$(PROJ).o: $(PROJ).c Inventory.h
$(CC) $(CCFLAGS) -c $(PROJ).c

Inventory.o: Inventory.c Inventory.h Cd.h
$(CC) $(CCFLAGS) -c Inventory.c

Cd.o: Cd.c Cd.h Date.h
$(CC) $(CCFLAGS) -c Cd.c

Date.o: Date.c Date.h
$(CC) $(CCFLAGS) -c Date.c

.PHONY: submit
submit:

submit cs341 $(PROJ) $(SOURCES) Makefile *.txt

.PHONY: print
Print:

enscript -G2rE $(SOURCES) Makefile *.txt

Advanced Makefile

13

Templates
• As mentioned in class you should never

explicitly compile template classes when using
g++

• What implications does this have on makefiles?
– Do not create a target for a template class

• You will never make a myTemplateClass.o object file, as
template code automatically gets compiled when it is seen
declared

– Since object files are not created, they do not be
listed in the OBJECTS target dependency list

– Do list template class files as dependencies for an
target (object) when the files that create that target
(object) reference them

