Chapter 3

Describing Syntax
and Semantics

© 1998 by Addison Wesley Longman, ¢

I ntroduction

We usually break down the problem of defining a
programming language into two parts.

* Defining the PL’ s syntax

* Defining the PL’ s semantics

Syntax - the form or structure of the expressions,
statements, and program units

Semantics - the meaning of the expressions,
statements, and program units.

Note: Thereis not aways a clear boundary
between the two.

© 1998 by Addison Wesley Longman, ¢

Why and How

Why? Wewant specifications for several
communities:;

—Other language designers

* Implementors

* Programmers (the users of the language)

How? Onewaysis vianatural language descriptions
(e.g., user's manuals, text books) but there are a
number of techniques for specifying the syntax and
semantics that are more formal.

© 1998 by Addison Wesley Longman, ¢

Syntax Overview

e Language preliminaries
 Context-free grammars and BNF
» Syntax diagrams

© 1998 by Addison Wesley Longman, ¢

I ntroduction Lexical Structure of

A sentenceis astring of characters over some Programming Languages
a phabet » Thestructure of its lexemes (words or tokens)
’ — token is a category of lexeme
A languageis a set of sentences The scanning phase (lexical analyser) collects characters
) into tokens
A lexemeisthelowest level syntactic unit of a . Etarit ng phase(syntacti c analyser)determines syntactic
language (e.g., *, sum, begin). rucure

Resu_lt of
A token is acategory Of Iexemes (e.g.’ Identlfler). charac er|3:1> E>alues |:|'> |:l,>Parsmg

Formal approaches to describing syntax:

1. Recognizers - used in compilers

lexical

Syntactic
analyser

analyser

2. Generators - what welll study

©1998 by Addison Weslev L ongman, I nc, 5 Lcvsc 331, ©1998 by Addison Weslev Longman, I nc,
Grammars BNF (continued)
Context-Free Grammars A metalanguage is alanguage used to describe
* Deveoped by Noam Chomsky in the mid- another language.
1950s.
. Language generators, meant to describethe In BNF, abstractions are used to represent
syntax of natural languages. classes of syntactic structures--they act like
* Define aclass of languages called context-free syntactic variables (al so called nonterminal
languages. symbols), e.g.
<while_stnt> ::= while <logic_expr> do <stnt>
Backus Normal/Naur Form (1959) o _ . _
« Invented by John Backus to describe Algol 58 Thisisarule; it describes the structure of awhile
and refined by Peter Naur for Algol 60. statement
* BNF is equivalent to context-free grammars
©1998 by Addison Weslev L ongman, I nc, 7 Lcvsc 331, ©1998 by Addison Weslev Longman, I nc,

BNF

* A rule has aleft-hand side (LHS) whichisasingle
non-terminal symbol and a right-hand side (RHS),
one or more terminal or nonterminal symbols.

» A grammar is afinite nonempty set of rules

* A non-terminal symbol is “defined” by one or more
rules.

» Multiple rules can be combined with the | symbol so

that
<stms> .= <stnt>
<stnts> ::= <stmt> ; <stmmts>

And thisrule are equivalent

<stnmts> ::= <stm>| <stmmt> ; <stmmts>

© 1998 by Addison Wesley Longman, ¢

BNF

Syntactic lists are described in BNF using
recursion
<ident list> -> ident

| ident, <ident_|ist>

A derivation is arepeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal symbols)

© 1998 by Addison Wesley Longman, ¢

10

BNF Example

Hereis an example of asimple grammar for a subset of English.

A sentenceis noun phrase and verb phrase followed by a
period.

<sent ence> ;= <noun- phrase><ver b- phr ase>
<noun- phrase> ::= <articl e><noun>
<article> a | the

<noun> : man | apple | worm| penguin
<verb-phrase> ::= <verb> | <verb><noun-phrase>
<ver b> = eats | throws | sees | is

© 1998 by Addison Wesley Longman, ¢

11

Derivation using BNF

<sentence> -> <noun-phrase><verb-phrase>.
<article><noun><verb_phrase>.
the<noun><verb_phrase>.
the man <verb_phrase>.
the man <verb><noun-phrase>.
the man eats <noun-phrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.

© 1998 by Addison Wesley Longman, ¢

12

Another BNF Example

<progrank -> <stnts> Note: Thereis some

<stmts> -> <stm> o BNE ammre
| <stm>; <stnts> Hereweare using ->

<stmt> -> <var> = <expr> i the rules instead

<var>->a | b | c| d

<expr> -> <ternp + <ternr | <ternmr - <ternp

<term> -> <var> | const

Hereisa derivation:
<progranr => <stnts> => <stnt>
=> <var> = <expr> => a = <expr>

Derivation

Every string of symbolsin the derivationis
asentential form.

A sentence is a sentential form that has only
terminal symbols.

A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
isthe onethat is expanded.

A derivation may be neither leftmost nor
rightmost (or something else)

=> a = <ternp + <terne
= a = <var> + <ternp
= a=>b + <ternp
=> a = b + const
Levsc 331, 1998 by Addison Wesley Longman, Inc, 13
Parse Tree

A parse tree is a hierarchical representation of
a derivation <rogram

<stmts>
I
<stnt>
pd
<var> = <expr>
|
a <termp + <ternmp
|
<var > const
|
b
LCMsC 33t £.1908 by Addison Wesley Longman, Loc, 15

£.1908 by Addison Wesley Longman, Loc, 14
Another Parse Tree
/@D%
W> <verb_phrase>
<ar[ic|e> <n0\rn> <verb> <noun-phrase>
the man e!ats
<ar[ic|e> <noun>
the apple
16

© 1998 by Addison Wesley Longman, ¢

Grammar

A grammar is ambiguous iff it generates a
sentential form that has two or more
distinct parsetrees.

Ambiguous grammars are, in general, very
undesirablein formal languages.

We can eliminate ambiguity by revising
the grammar.

©.1998 by Addison Wesey Longman, 10¢ 17

Grammar

Hereis a simple grammar for expressionsthat is
ambiguous
<expr> -> <expr> <op> <expr>

<expr> -> int
<op> -> 4| -|*|/

The sentence 1+2* 3 can lead to two different parse trees
corresponding to 1+(2*3) and (1+2)*3

©.1998 by Addison Wesey L ongman, 1¢ 18

Grammar

If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity

An unambiguous expression grammar:

<expr> -> <expr> - <termp | <ternp

<term> -> <term> / const | const
/Qrp\
<expr> - <t ernmp
<ternmp <termr / const

const const

©.1998 by Addison Wesey L ongman, 10¢ 19

Grammar (continued)
<expr> => <expr> - <termp => <ternmp - <ternve
=> const - <terne
=> const - <terne / const
=> const - const / const

Operator associativity can also beindicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>
<expr> + const

<expr> + const

|
const

©.1998 by Addison Wesey L ongman, 1¢ 20

An Expression Grammar

Here'sa grammar to define simple arithmetic expressions
over variables and numbers.

Exp ::= num

Exp ::=id

Exp ::= UnOp Exp Here's another common

Exp := Exp BinOp Exp notation variant where
I " single quotes are used to

Exp ="(Exp’) indicate terminal

symbols and unquoted
et symbols are taken as
UnOp ::="+ non-terminals.
unOp ::="-'

BInOp oy ||_| | %t ||/-

©.1998 by Addison Wesey Longman, 10¢ 21

A parsetree

A parse tree for a+b*2:

Exp BinQp Exp
I 7 \
identifier + Exp BinOp Exp
I (.

identifier * nunber

©.1998 by Addison Wesey L ongman, 10¢ 23

A derivation

Here' s aderivation of at+b*2 using the expression grammar:

Exp => /1 Exp ::= Exp BinQp Exp
Exp BinOp Exp => /Il Exp ::=1id
id BinOp Exp => /1 BinOp ::= "'+
id + Exp => /1l Exp ::= Exp BinOp Exp
id + Exp BinOp Exp => // Exp ::= num
id + Exp BinOp num=>// Exp ::=id
id+id BinOp num=> // BinQp ::="'*'
id+ id* num
a +b *2
lovscan . 1980 y Adcon Wesev L onanan 22
Precedence

Precedence refers to the order in which operations are evaluated. The
convention is: exponents, mult div, add sub.

« Deal with operations in categories: exponents, mulops, addops.
Her€' s arevised grammar that follows these conventions:

Exp ::= Exp AddOp Exp
Exp ::= Term
Term::= Term Mul O Term
Term::= Factor

Factor ::="'('" + Exp +')°
Factor ::= num| id
AddQp ::= "'+ | '’
MIEQp ::="*" | "/

lcvsc 31 ©.1998 by Addison Wesey L ongman, 1¢ 24

Associativity

Associativity refers to the order in which 2 of the same
operation should be computed
— 3+4+5 = (3+4)+5, |eft associative (all BinOps)
— 3715 = 37N(415), right associative
— 'if x thenif x theny elsey’ ="if x then (if x then y elsey)', else associates
with closest unmatched if (matched if has an else)

Adding associativity to the BinOp expression grammar

Exp = Exp AddOp Term
Exp = Term

Term = Term Mul Op Factor
Term ::= Factor

Factor ::="'(' Exp ')’
Factor ::= num| id

AddOp =+

Ml Op =

© 1998 by Addison Wesley Longman, ¢

25

Another example: conditionals

« Godl: to create a correct grammar for conditionals.

* It needs to be non-ambiguous and the precedence is else
with nearest unmatched if.

St at ement ::= Conditional | 'whatever'
Conditional ::="'if' test 'then' Statement 'else' Statenent
Conditional ::="'if' test 'then' Statement

e Thegrammar is ambiguous. The 1st Conditional allows
unmatched 'if's to be Conditionals.

if test then (if test then whatever else whatever) = correct

if test then (if test then whatever) el se whatever = incorrect
¢ Thefinal unambiguous grammar.

Extended BNF

Syntactic sugar: doesn’t extend the expressive power of the
formalism, but does make it easier to use.

Optiona parts are placed in brackets ([])
<proc_call> -> ident [(<expr_list>)]

Put aternative parts of RHSs in parentheses and
separate them with vertical bars

<term> -> <term> (+ | -) const
Put repetitions (0 or more) in braces ({})
<ident> -> |etter {|etter | digit}

© 1998 by Addison Wesley Longman, ¢

27

Statement ::= Matched | Unmatched
Matched ::= "if' test 'then' Matched 'else' Matched | 'whatever'
Unmatched ::= "if' test 'then' Statement
| "if' test 'then' Matched el se Unmatched
s o A Wy L 0 26
BNF
BNF:
<expr> -> <expr> + <ternp
| <expr> - <terne
| <ternms
<ternr -> <term> * <factor>
| <term> / <factor>
| <factor>
EBNF:
<expr> -> <term> {(+ | -) <ternv}
<termr -> <factor> {(* | /) <factor>}
28

© 1998 by Addison Wesley Longman, ¢

Syntax Graphs

Syntax Graphs - Put the terminalsin circles or dlipses
and put the nonterminal s in rectangles; connect with
lines with arrowheads

e.g., Pascal type declarations

type_identifier —
O QO
const ant »————[constant ——

| cmscaa © 1998 by Addison Wesley Longman, ¢

29

Parsing

» A grammar describes the strings of tokens that are
syntactically legal inaPL

* A recogniser simply accepts or rgjects strings.

» A parser construct a derivation or parse tree.

» Two common types of parsers:
— bottom-up or data driven
— top-down or hypothesis driven
* A recursive descent parser tracesisaway to
implement a top-down parser that is particularly
simple.

©.1998 by Addison Wesey L ongman, 1¢ 30

Recursive Decent Parsing

* Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

» The recursive descent parsing subprograms
are built directly from the grammar rules

* Recursive descent parsers, like other top-
down parsers, cannot be built from | eft-
recursive grammars (why not?)

| cmscaa © 1998 by Addison Wesley Longman, ¢

31

Recursive Decent Parsing Example
Example: For the grammar:

<termr -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (thisoneis
writtenin C)

void term() {
factor(); /* parse first factor*/
whil e (next_token == ast_code ||
next _t oken == sl ash_code) {
lexical (); /* get next token */
factor(); /* parse next factor */
}
£.1908 by Addison Wesley Longman, Loc, 32

Semantics

lcivsc 31 ©.1998 by Addison Wesey Longman, 10¢ 33

Semantics Overview

 Syntax is about “form” and semantics about
“meaning”.

* The boundary between syntax and semanticsis
not always clear.

* First we'll look at issues close to the syntax end,
what Sebesta calls “static semantics’, and the
technique of attribute grammars.

 Then we'll sketch three approaches to defining
“deeper” semantics
— Operational semantics
— Axiomatic semantics
— Denotational semantics

©.1998 by Addison Wesey L ongman, 1¢ 34

Static Semantics

Static semantics covers some language features that
aredifficult or impossibleto handlein a
BNF/CFG.

It is aso a mechanism for building a parser which
produces a “abstract syntax tree’ of it’sinput.

Categories attribute grammars can handle:

» Context-free but cumbersome (e.g. type
checking)

» Noncontext-free (e.g. variables must be
declared before they are used)

lcivsc 31 ©.1998 by Addison Wesey L ongman, 10¢ 35

Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)
» CFGs cannot describe al of the syntax
of programming languages
* Additionsto CFGs to carry some
“semantic” info along through parse
trees

Primary value of AGs:
* Static semantics specification

» Compiler design (static semantics checking)

©.1998 by Addison Wesey L ongman, 1¢ 36

Attribute Grammar Example

In Ada we have the following rule to describe prodecure

definitions:
<proc> -> procedure <procName> <procBody> end <procName> ;

But, of course, the name after “ procedure’ has to be the same
as the name after “ end”.

Thisis not possibleto capturein a CFG (in practice) because
there are too many names.

Solution: associate simple attributes with nodes in the parse
treeand add a“ semantic” rules or constraints to the
syntactic rule in the grammar.

<proc> -> procedure <procName>[1] <procBody> end <procName>[2] ;
<procName][1].string = <procName>[2].string

©.1998 by Addison Wesey Longman, 10¢ 37

Attribute Grammars

Def: An attribute grammar isa CFG
G=(SN,T,P)

with the following additions:
— For each grammar symbol x thereis a set A(X) of
attribute values.
—Each rule has a set of functions that define certain
attributes of the nonterminalsin therule.
—Each rule has a (possibly empty) set of predicates to
check for attribute consistency

| cuscaa © 1998 by Addison Wesley Longman, ¢

38

Attribute Grammars

Let X,->X; .. X, bearule

Functions of the form S(X,) = f(A(X,), ... A(X,)))
define synthesized attributes

Functions of theform 1(X)) = f(A(X), .. , A(X,)) for i
<=j <= ndefineinherited attributes

Initialy, there areintrinsic attributes on the leaves

©.1998 by Addison Wesey L ongman, 10¢ 39

Attribute Grammars
Example: expressions of theform id + id

«i d'scan bedtherint_typeor rea_type
« types of thetwo i d's must be the same
« type of the expression must match it's expected type

BNF: <expr> -> <var> + <var>

<var> -> id

Attributes:

actual_type - synthesized for <var > and <expr >

expected_type - inherited for <expr >

| cuscaa © 1998 by Addison Wesley Longman, ¢

40

Attribute Grammars
Attribute Grammar:

1. Syntax rule. <expr> -> <var>[1] + <var>[2]
Semantic rules:
<expr>. actua_type- <var>[1] . actud_type
Predicate:
<var>[1] . actua_type=<var >[2] . actual_type
<expr >. expected_type= <expr >. actua_type

2. Syntaxrule; <var> -> id
Semantic rule;
<var >. actua_type- lookup (i d, <var>)

lcivsc 31 ©.1998 by Addison Wesey Longman, 10¢ 41

Attribute Grammars (continued)

How are attribute values computed?

o|f all attributes wereinherited, the tree
could be decorated in top-down order.

oIf al attributes were synthesized, the tree
could be decorated in bottom-up order.

*In many cases, both kinds of attributes are
used, and it is some combination of top-
down and bottom-up that must be used.

©.1998 by Addison Wesey L ongman, 1¢ 42

Attribute Grammars (continued)

<expr >. expected type- inherited from parent

<var>[1] . actua_type- lookup (A, <var>[1])
<var>[2] . actud_type- lookup (B, <var>[2])
<var >[1] . actual_type=?<var >[2] . actua_type

<expr >. actual_type- <var>[1] . actua_type
<expr >. actua_type=?<expr >. expected type

lcivsc 31 ©.1998 by Addison Wesey L ongman, 10¢ 43

Dynamic Semantics

No single widdly acceptable notation or formalism
for describing semantics.

The general approach to defining the semantics of
any language L is to specify a general mechanism
to translate any sentencein L into a set of
sentences in another language or system that we
take to be well defined.

Here are three approaches we'll briefly ook at:
— Operational semantics
— Axiomatic semantics
— Denotational semantics

©.1998 by Addison Wesey L ongman, 1¢ 44

Operational Semantics

« ldea: describe the meaning of a program in language L
by specifying how statements effect the state of a
machine, (simulated or actual) when executed.

» The changein the state of the machine (memory,
registers, stack, heap, etc.) defines the meaning of the
Statement.

« Similar in spirit to the notion of a Turing Machine and
a'so used informally to explain higher-level constructsin
terms of simpler ones, asin:

¢ statement operational semantics
for(el;e2;eld) el;
{ <body>} | oop: if e2=0 goto exit
<body>
es3;
goto | oop
exit:
£.1908 by Addison Wesley Longman, Loc, 45

Operational Semantics

* To use operational semantics for a high-level
language, avirtua machinein needed
* A hardware pureinterpreter would be too
expensive
* A software pureinterpreter also has problems:
* The detailed characteristics of the particular
» computer would make actions difficult to
understand
* Such a semantic definition would be
machi ne-dependent

©.1998 by Addison Wesey L ongman, 1¢ 46

Operational Semantics

A better alternative: A complete computer
simulation

 Build atrandlator (translates source code to the machine
code of an idealized computer)

 Build asimulator for theidealized computer
Evaluation of operational semantics:

* Good if used informally

« Extremely complex if used formally (e.g. VDL)

©.1998 by Addison Wesey L ongman, 10¢ 47

Vienna Definition Language

VDL was alanguage developed at IBM ViennalLabsas a
language for formal, al gebraic definition via operational
semantics.

It was used to specify the semantics of PL/I.

See: The Vienna Definition Language, P. Wegner, ACM
Comp Surveys 4(1):5-63 (Mar 1972)

The VDL specification of PL/I was very large, very

complicated, aremarkable technical accomplishment, and
of little practical use.

©.1998 by Addison Wesey L ongman, 1¢ 48

Axiomatic Semantics

* Based on formal logic (first order predicate cal culus)
* Original purpose: formal program verification
* Approach: Define axioms and inference rulesin logic
for each statement type in the language (to allow
transformations of expressions to other expressions)
* The expressions are called assertions and are either
* Preconditions: An assertion before a statement
states the rel ationships and constraints among
variables that are true at that point in execution
* Postconditions: An assertion following a
Statement

© 1998 by Addison Wesley Longman, ¢

49

Logic 101

Propositional logic:
Logical constants: true, false
Propositional symbols: P, Q, S, ... that are either true or false

Logical connectives: U (and) , U (or), b (implies), U (is equivalent), @ (not)
which are defined by the truth tables below.

Sentences are formed by combining Fropositionql symbols, connectives and
parentheses and are elther true or false. e.g.: PUQU @ (@P U @Q)

First order logic adds
Variables which can range over objects in the domain of discourse
Quantifiersincluding: " (forall) and $ (there exists)
Example sentences:
("' ("9 pUal @ (2p U o)
" x prime(X) P $y prime(y) Uy>x

P o —P PAQ PvO P=0 P a0
Fulse Fudse Trie Fuilss Fulse True True
Flse True Trise Fuilse Tre True Futlse
True Fulse Fuilse Fuil sz Thie Fiilse Fulse
True True Fuilse Thie Thie Truie True
£.1908 by Addison Wesley Longman, Loc, 50

Axiomatic Semantics

A weakest precondition is the least restrictive
precondition that will guarantee the postcondition

Notation:
{P} Statement { Q}
precondition postcondition
Example:
{#a=b+1{a>1}

We often need to infer what the precondition must be for a
given postcondition

One possible precondition: {b > 10}
Weekest precondition: {b > 0}

© 1998 by Addison Wesley Longman, ¢

51

Axiomatic Semantics

Program proof process:

* The postcondition for the whole program
isthe desired results.

» Work back through the program to the
first statement.

* If the precondition on the first statement is
the same as the program spec, the program
is correct.

©.1998 by Addison Wesey L ongman, 1¢ 52

Example: Assignment Statements

Here' s how we might define asimple
assignment statement of theformx :=eina
programming language.
¢ {Qx->E} X .= E{Q}
» Where Q, . means the result of replacing
all occurrences of x withE in Q
So from
{Q} a:=b/2-1{a<10}
We can infer that the weakest precondition Q
is
b/2-1<10 or b<22

©.1998 by Addison Wesey Longman, 10¢ 53

Axiomatic Semantics

*The Rule of Consequence:
{P} S{Q}, P =>P, 0=>0Q A notation from
bolic | f
{P} S{Q} e amiect
inference with premise
*An inference rule for sequences i';end conseguence Q
P
*For a sequence S1;S2: 0
{P1} S1{P2} For example, Modus
Ponens can be
{P2} S2{P3} specified as:
theinferenceruleis: P, P5>

{P1} S1{P2},{P2} S2{P3}
{P1} S1; S2{P3}

© 1998 by Addison Wesley Longman, ¢

54

Conditions

Here' sarule for aconditional statement

{BUP} S1{Q},{@BUP} 2{Q}
{P} if B then S1 dlse 52 { Q}

And an example of it's use for the statement
{P} if x>0 then y=y-1 else y=y+1 { y>0}
So the weakest precondition P can be deduced as follows:
The postcondition of S1 and S2is Q.
The weakest precondition of S1isx>0 Uy>1 and for S2isx>0 Uy>-1

The rule of consequence and the fact that y>1 P y>-1supports the
conclusion

That the weakest precondition for the entire conditional isy>1 .

©.1998 by Addison Wesey L ongman, 10¢ 55

L oops

For the loop construct {P} whileB do Send {Q}
theinferenceruleis:

{1UB} S {I} i
{1} whileB do S{I U@B}

where | istheloop invariant, a proposition
necessarily true throughout the loop’ s execution.

© 1998 by Addison Wesley Longman, ¢

56

Loop Invariants

A loop invariant | must meet the following conditions:
1.P=>1 (theloop invariant must be trueinitialy)
2.{1} B{l} (evaluation of the Boolean must not change the validity of 1)
3.{landB} S{I} (I isnot changed by executing the body of the loop)
4.(l and (not B)) =>Q (if l istrueand B isfalse, Q isimplied)

5. Theloop terminates (this can be difficult to prove)

« Theloop invariant | is aweakened version of the loop
postcondition, and it is also a precondition.

« | must be weak enough to be satisfied prior to the beginning of
the loop, but when combined with the loop exit condition, it
must be strong enough to force the truth of the postcondition

57

| cmscaa © 1998 by Addison Wesley Longman, ¢

Evaluation of Axiomatic Semantics

« Developing axioms or inference rules for all of the
statements in alanguageis difficult

« Itisagood tool for correctness proofs, and an
excellent framework for reasoning about programs

« Itismuch less useful for language users and compiler
writers

© 1998 by Addison Wesley Longman, ¢

58

Denotational Semantics

* A technique for describing the meaning of
programs in terms of mathematical functions on
programs and program components.

* Programs are translated into functions about
which properties can be proved using the standard
mathematical theory of functions, and especially
domain theory.

* Originally developed by Scott and Strachey
(1970) and based on recursive function theory

» The most abstract semantics description method

59

Denotational Semantics

* The process of building a denotationa
specification for alanguage:
1. Define a mathematical object for each
language entity
2. Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects
» The meaning of language constructs are defined
by only the values of the program'’s variables

© 1998 by Addison Wesley Longman, ¢

60

| cmscaa © 1998 by Addison Wesley Longman, ¢

Denotational Semantics (continued)

The difference between denotational and operational
semantics: In operational semantics, the state changes are
defined by coded algorithms; in denotational semantics,
they are defined by rigorous mathematical functions

» The state of aprogram is the values of all its current
variables

s={<iy, v;>, <ip, V>, ..., <ip, V,>}

* Let VARMAP be afunction that, when given avariable
name and a state, returns the current value of the variable

VARMAR(i;, §) =V,

©.1998 by Addison Wesey Longman, 10¢ 61

Example: Decimal Numbers
<dec num>® 0|1]2]|3|4|5|6]7|8]9
| <dec_num> (0]12|3}4|5/6|7(8[9)
Miee(0) =0, Mgee (1) =1, ..., M (9) =9

M gec (Sdec_num>'0") = 10 * M, (<dec_num>)
M gec (<dec_num>'1") =10 * M, (<dec_num>) + 1

M gec (dec_num>'9") = 10 * M. (<dec_num>) +9

EXxpressions
M(<expr>, s) D=
case <expr> of
<dec_num> => M (<dec_num>, s)

<var> =>
if VARMAP(<var>, s) = undef
then error
dse VARMAP(<var>, s)
<binary_expr> =>

if (M (<binary_expr>.<left_expr>, s) = undef
OR M(<binary_expr>.<right_expr>, s) =
undef)
then error
ese
if (<binary_expr>.<operator> = ‘+' then
M(<binary_expr>.<left_expr>, s) +
M(<binary_expr>.<right_expr>, s)
else M (<binary_expr>.<left_expr>, s) *
M(<binary_expr>.<right_expr>, s)

©.1998 by Addison Wesey L ongman, 10¢ 63

£.1908 by Addison Wesley Longman, Loc, 62
Assignment Statements
MqX :=E, s) D=
if Me(E, S) = error
then error
dse S’ = {<il, ;Vl, >;<i2, ’VZ, >,---,<in' ,Vn' >} ’
whereforj=1, 2, ..., n,
Vi = VARMAP(j;, 9) if ij <> X
= Mg(E, 9) ifij =x
£.1908 by Addison Wesley Longman, Loc, 64

L ogical Pretest L oops
M(whileB do L, s) D=
if My(B,) = undef
then error
eseif My(B, s) =false

thens

eseif Mg(L, S) = error
then error
ese M(whileB do L, Mg(L, 9))

©.1998 by Addison Wesey Longman, 10¢ 65

Logical Pretest Loops

» The meaning of theloop is the value of the
program variables after the statements in the loop
have been executed the prescribed number of
times, assuming there have been no errors

* In essence, theloop has been converted from
iteration to recursion, where the recursive control
is mathematically defined by other recursive state
mapping functions

* Recursion, when compared to iteration, is easier to
describe with mathematical rigor

© 1998 by Addison Wesley Longman, ¢

66

Denotational Semantics

Evaluation of denotational semantics:

* Can be used to prove the correctness of
programs

* Provides arigorous way to think about
programs

* Can be an aid to language design

* Has been used in compiler generation
systems

©.1998 by Addison Wesey L ongman, 10¢ 67

Summary

This chapter covered the following

» Backus-Naur Form and Context Free
Grammars

» Syntax Graphs and Attribute Grammars

 Semantic Descriptions. Operational,
Axiomatic and Denotational

© 1998 by Addison Wesley Longman, ¢

68

