CMSC 313, Spring 2010
Project 5 The Buffer Bomb
Assigned: Wed., Apr. 14, Due: Tues., Apr. 27, 11:59PM

I ntroduction

This assignment helps you develop a detailed understardditite calling stack organization on an 1A32
processor. It involves applying a serieshofffer overflow attacken an executable filbuf borb found in
Mr. Frey’s publc directory for this project @f s/ unbc. edu/ users/f/r/frey/ pub/ 313/ proj 5)

Note: In this lab, you will gain firsthand experience with one of tmethods commonly used to exploit

security weaknesses in operating systems and networkrse®@er purpose is to help you learn about the
runtime operation of programs and to understand the nafiufleisoform of security weakness so that you

can avoid it when you write system code. We do not condonedbetithese or any other form of attack to
gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

L ogistics

You may work in a group of up to two people in solving the probefor this assignment. The only
“hand-in” will be an automated logging of your successfuaeks. Any clarifications and revisions to the
assignment will be posted on the course Web page.

Hand Out I nstructions

Start by copyingouf | ab- handout . t ar from Mr. Frey’s public directory to a (protected) directary
which you plan to do your work. Then give the commanafl xvf bufl ab-handout. tar”. This
will cause a number of files to be unpacked in the directory:

MAKECOOKIE: Generates a “cookie” based on your team name.
BUFBOMB: The code you will attack.

SENDSTRING A utility to help convert between string formats.

All of these programs are compiled to run on Linux machines.

Because théuf bonb sends out email messages, you may only work orcgi@13. gl . unbc. edu as
with project 4.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localadogy.

Team Name and Cookie

You should create a team name for the one or two people in youpgof the following form:

e “ID” where ID is your UMBC user ID, if you are working alone, or

e “ID{+ID5" where ID is the UMBC user ID of the first team member afd, is the UMBC user
ID of the second team member.

You should choose a consistent ordering of the IDs in thersfrm of team name. Teama¢00+bovi k”
and ‘bovi k+ac00” are considered distinctYou must follow this scheme for generating your team
name. Our grading program will only give credit to those people whose UMBC user I1Ds can be
extracted from the team names.

A cookieis a string of eight hexadecimal digits that is (with high fpability) unique to your team. You

can generate your cookie with tmakecooki e program giving your team name as the argument. For
example:

uni x> ./ makecooki e ac00+bovi k
0x78327b66

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

TheBUFBOMB program reads a string from standard input with a funcgem buf having the following C
code:

1 int getbuf()

2 {

3 char buf[12];
4 Get s(buf);

5 return 1,

6}

The functionGet s is similar to the standard library functiaget s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminate) the specified destination.

2

In this code, the destination is an arfayf having sufficient space for an 11 character string plus thle nu
terminator.

NeitherGet s norget s has any way to determine whether there is enough space atshiaation to store
the entire string. Instead, they simply copy the entirangtrpossibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user et buf is no more than 11 characters long, it is clear that buf will
return 1, as shown by the following execution example:

uni x> ./ buf bonb
Type string: howdy doody
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

uni x> ./ buf bonb
Type string: This string is too |ong
Quch!: You caused a segnentation fault!

As the error message indicates, overrunning the buffercaflyi causes the program state (the stack) to
be corrupted, leading to a memory access error. Your task etmore clever with the strings you feed
BUFBOMB so that it does more interesting things. These are caligtbitstrings.

BurFBoOMB takes several different command line arguments:

-t TEAM Operate the bomb for the indicated team. You should alwaysige this argument for several
reasons:

e Itis required to log your successful attacks.

e BurBOMB determines the cookie you will be using based on your teamenamt as does the
programMAKECOOKIE.

e We have built features intBUFBOMB so that some of the key stack addresses you will need to
use depend on your team’s cookie.

- h: Print list of possible command line arguments

- n: Operate in “Nitro” mode, as is used in Level 4 below.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The prograBeENDSTRINGCan help you generate thesav strings. Its input is dex-formatted
string. In this format, each byte value is represented byherodigits. For example, the strin@12345”
could be entered in hex format a30 31 32 33 34 35." (Recall that the ASCII code for decimal digit
x i1s 0x3x.) Non-hex digit characters are ignored, including the kéim the example shown.

If you generate a hex-formatted exploit string in the &bepl oi t . t xt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string threggldSTRING
uni x> cat exploit.txt | ./sendstring | ./bufbonmb -t bovik
2. You can store the raw string in a file and use 1/O redirectosupply it toBUFBOMB:

uni x> ./sendstring < exploit.txt > exploit-rawtxt
uni x> ./ bufbonb -t bovik < exploit-raw txt

This approach can also be used when runmngsomB from within GDB:

uni x> gdb buf bonb
(gdb) run -t bovik < exploit-rawtxt

One important point: your exploit string must not contairidoyalueOx0A at any intermediate position,
since this is the ASCII code for newline\ (). When Get s encounters this byte, it will assume you
intended to terminate the stringeSDSTRING will warn you if it encounters this byte value.

When you correctly solve one of the levetsjFrBomB will automatically send an email notification to our
grading server. The server will test your exploit string taka sure it really works, and it will update the
lab web page indicating that your team (listed by cookie)dmmpleted this level.

Unlike the bomb lab, there is no penalty for making mistakethis lab. Feel free to fire away BUFBOMB
with any string you like.

Level 0. Candle (5 pts)

The functionget buf is called withinsuFBoMB by a function nametiest having the following C code:

1 void test()

2 {

3 int val;

4 volatile int local = Oxdeadbeef;

5 entry check(3); /* Make sure entered this function properly =/
6 val = getbuf();

7 /* Check for corrupted stack =*/

8 if (local !'= Oxdeadbeef) {

9 printf("Sabotaged!: the stack has been corrupted\n");
10 }

11 else if (val == cookie) {

12 printf("Boom : getbuf returned Ox%\n", val);

13 val i dat e(3);

14 }

15 el se {

16 printf("Dud: getbuf returned Ox%\n", val);

17 }

18 }

Whenget buf executes its return statement (line Sgaft buf), the program ordinarily resumes execution
within functiont est (at line 8 of this function). Within the filduf borb, there is a functiorsnoke
having the following C code:

voi d snoke()

{
entry _check(0); [/* Make sure entered this function properly */
printf("Snoke!: You called smoke()\n");
val i dat e(0)
exit(0);
}

Your task is to geBUFBOMB to execute the code fanoke whenget buf executes its return statement,
rather than returning tbest . You can do this by supplying an exploit string that overesithe stored
return address in the stack frame fpet buf with the address of the first instruction $moke. Note that
your exploit string may also corrupt other parts of the statzite, but this will not cause a problem, since
snoke causes the program to exit directly.

Some Advice:

¢ All the information you need to devise your exploit string this level can be determined by exam-
ining a diassembled version BUFBOMB.

e Be careful about byte ordering.

¢ You might want to us&DB to step the program through the last few instructionge@f buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version afcc was
used to compilduf bonb. You will need to pad the beginning of your exploit string kvihe proper
number of bytes to overwrite the return pointer. The valueh@se bytes can be arbitrary.

Level 1. Sparkler (10 pts)

Within the filebuf bonb there is also a function naméd zz having the following C code:

void fizz(int val)

{
entry check(1l); /* Mike sure entered this function properly =/
if (val == cookie) {
printf("Fizz!: You called fizz(Ox%)\n", val);
val i date(1);
} else
printf("Msfire: You called fizz(0Ox%)\n", val);
exit(0);
}

Similar to Level 0, your task is to g&@UFBOMB to execute the code fdri zz rather than returning to
t est . In this case, however, you must make it appearitaz as if you have passed your cookie as its
argument. You can do this by encoding your cookie in the gppjriate place within your exploit string.

Some Advice:

¢ Note that the program won't really cdili zz —it will simply execute its code. This has important
implications for where you want to place your cookie on treckt

Level 2. Firecracker (15 pts)

A much more sophisticated form of buffer attack involvesyimg a string that encodes actual machine
instructions. The exploit string then overwrites the rataddress with the starting address of these instruc-
tions. When the calling function (in this caget buf) executes it$ et instruction, the program will start
executing the instructions on the stack rather than ratgenWith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stacKledctheexploitcode. This style of attack

is tricky, though, because you must get machine code ontstéiol and set the return address to the start of
this code.

Within the filebuf bonb there is a function namdaang having the following C code:

i nt global _value = 0;

voi d bang(int val)

{
entry _check(2); [/* Make sure entered this function properly */
i f (global_value == cookie) {
printf("Bang!: You set gl obal _value to Ox%\n", gl obal_val ue);
val i dat e(2)
} else
printf("Msfire: gl obal _value = 0x%\n", gl obal val ue);
exit(0);
}

Similar to Levels 0 and 1, your task is to gaiFBOMB to execute the code fiwang rather than returning to
t est . Before this, however, you must set the value of the globahlke gl obal _val ue to your team’s
cookie. Your exploit code should sgt obal _val ue, push the address @fang on the stack, and then
execute a et instruction to cause a jump to the code ang.

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such asddeess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesangdhs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code dibataining the instructions and data

6

you want to put on the stack. Assemble this file witbc and disassemble it witbBiDUMP. You
should be able to get the exact byte sequence that you wél &yphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on the GL machine, and make sureipclude the proper team name on
the command line t UFBOMB.

e Our solution requires 16 bytes of exploit code. Fortunatitgre is sufficient space on the stack, so
we can overwrite the stored value @bp. This stack corruption will not cause any problems, since
bang causes the program to exit directly.

e Watch your use of address modes when writing assembly codge tHatnmovl $0x4, %ax
moves thevalue0x00000004 into register¥eax; whereasrovl 0x4, %eax moves the value
at memory locatiorDx00000004 into eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjarp or acal | instruction to jump to the code fdsang. These
instructions uses PC-relative addressing, which is veckyrto set up correctly. Instead, push an
address on the stack and usettle instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumpeadde for some other function, which
then causes the program to exit. As a result, it was acceptahise exploit strings that corrupt the stack,
overwriting the saved value of regist&ebp and the return pointer.

The most sophisticated form of buffer overflow attack caubesprogram to execute some exploit code
that patches up the stack and makes the program return taitfiead calling function { est in this case).
The calling function is oblivious to the attack. This styfeattack is tricky, though, since you must: 1) get
machine code onto the stack, 2) set the return pointer toténed this code, and 3) undo the corruptions
made to the stack state.

Your job for this level is to supply an exploit string that Wilauseget buf to return your cookie back to

t est, rather than the value 1. You can see in the codd st that this will cause the program to go
“Boom .” Your exploit code should set your cookie as the return ahestore any corrupted state, push
the correct return address on the stack, and execu anstruction to really return td est .

Some Advice:

¢ In order to overwrite the return address, you must also out#whe saved value dfebp. However,
it is important that this value is correctly restored befpog return ta est . You can do this by either
1) making sure that your exploit string contains the corredtie of the save@®bp in the correct
position, so that it never gets corrupted, or 2) restore tireect value as part of your exploit code.
You'll see that the code fdrest has some explicit tests to check for a corrupted stack.

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asathed return address
and the saved value é&bp.

e Again, let tools such asccandosibumpdo all of the work of generating a byte encoding of the
instructions.

e Keep in mind that your exploit string depends on your machyoer compiler, and even your team’s
cookie. Do all of your work on the GL machine, and make sureipolude the proper team name on
the command line tBUFBOMB.

Once you complete this level, pause to reflect on what you hagemplished. You caused a program to
execute machine code of your own design. You have done saufficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

If you have completed the first four levels, you have earnegdfts. You have mastered the principles
of the runtime stack operation, and you have gained firstiexpeérience with buffer overflow attacks. We
consider this a satisfactory mastery of the material. Yaweglcome to stop right now.

The next level is for those who want to push themselves beypomdaseline expectations for the course,
and who want to face a challenge in designing buffer overfittacs that arises in real life. This part of the
assignment only counts 10 points, even though it requireg afount of work to do, so don’t do it just for
the points.

From one run to another, especially by different users, Kaetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesatffenvironment variables are placed near the
base of the stack when a program starts executing. Envimhwagiables are stored as strings, requiring
different amounts of storage depending on their values.sTthe stack space allocated for a given user
depends on the settings of his or her environment varialftack positions also differ when running a

program undeGDB, sinceGDB uses stack space for some of its own state.

In the code that callget buf , we have incorporated features that stabilize the stacthatdhe position of
get buf 's stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addresshaff and the exact saved value @bp. If you tried to use
such an exploit on a normal program, you would find that it veoskme times, but it causes segmentation
faults at other times. Hence the name “dynamite’—an expdodeveloped by Alfred Nobel that contains
stabilizing elements to make it less prone to unexpectetbsixms.

For this level, we have gone the opposite direction, makimgstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explodivat is notoriously unstable.

When you rumsuFBOMB with the command line flag-“n,” it will run in “Nitro” mode. Rather than calling
the functionget buf , the program calls the slightly different functiget buf n:

i nt getbufn()

char buf[512];
Get s(buf);
return 1,

This function is similar taget buf , except that it has a buffer of 512 characters. You will négs addi-
tional space to create a reliable exploit. The code thas gat buf n first allocates a random amount of
storage on the stack (using library functiahl oca) that ranges between 0 and 127 bytes. Thus, if you
were to sample the value &&bp during two successive executions gt buf n, you would find they
differ by as much as-127.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executeget buf n 5 times, each with a different stack offset. Your exploitrgirmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®agjain, your job for this level is to supply an
exploit string that will causget buf n to return your cookie back to test, rather than the value 11 ¢&n
see in the code for test that this will cause the program toKEBOOM .” Your exploit code should set
your cookie as the return value, restore any corrupted,gpatsh the correct return location on the stack,
and execute aet instruction to really return to est n.

Some Advice:

e You can use the prograsENDSTRINGto send multiple copies of your exploit string. If you have a
single copy in the filexpl oi t . t xt, then you can use the following command:

uni x> cat exploit.txt | ./sendstring -n 5| ./bufbonb -n -t bovik

You must use the same string for all 5 executiong®f buf n. Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cdae90). You
can place a long sequence of these at the beginning of yoloiezpde so that your code will work
correctly if the initial jump lands anywhere within the seqge.

e You will need to restore the saved value%#bp in a way that is insensitive to variations in stack
positions.

L ogistical Notes

Hand in occurs automatically whenever you correctly solieal. The program sends email to our grading
server containing your team name (be sure to set th€ tommand line flag properly) and your exploit

string to the grading server. You will be informed of thisiyFBomB. Upon receiving the email, the server
will validate your string and update the lab web page. Yowsthcheck this page a few minutes after your

submission to make sure your string has been validated.o[lfrgally solved the level, your strirghould
be valid.]

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receivesbid message.

Have fun!

Generating Byte Codes

UsingGccas an assembler amBJDUMPas a disassembler makes it convenient to generate the ljgs co
for instruction sequences. For example, suppose we writke &fianpl e. s containing the following
assembly code:

Exanpl e of hand-generated assenbly code

pushl $0x89abcdef # Push val ue onto stack

addl $17, %eax # Add 17 to %ax

.align 4 # Following will be aligned on multiple of 4
.long Oxf edcba98 # A 4-byte constant

.long 0x00000000 # Paddi ng

The code can contain a mixture of instructions and data. Wingtto the right of a#' character is a
comment. We have added an extra word of all Os to work arouhdricoming inoBJDUMPto be described
shortly.

We can now assemble and disassemble this file:

uni x> gcc -c exanmple.s
uni x> obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 89 push $0x89abcdef

5: 83 ¢c0 11 add $0x11, %eax

8: 98 cw | Obj dunp tries to interpret
9: ba dc fe 00 00 nov $0xf edc, %€dx these as instructions

Each line shows a single instruction. The number on thenelicates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. silwe can see that
the instructionpushl $0x89ABCDEF has hex-formatted byte coé8 ef cd ab 89.

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the filecanpl e. o as
instructions, but these bytes actually correspond to ddédée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe. This is a byte-reversed version of the data woxd-EDCBA98.
This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first. Note also that it ongngrated two of the four bytes at the end with
value00. Had we not added this paddingsJDUMP gets even more confused and does not emit all of the
bytes we want.

10

Finally, we can read off the byte sequence for our code (omithe final 0's) as:

68 ef cd ab 89 83 c0O 11 98 ba dc fe

11

