
Testing

CMSC 202

Overview

• What is software testing?

• What is unit testing?

• Why/when to test?

• What makes a good test?

• What to test?

2

What is Software Testing?

• Software testing is any activity aimed at
evaluating an attribute or capability of a
program or system and determining that it
meets its required results.

3

— William Hetzel
 “The Complete Guide to Software Testing”

Types of Software Testing

• Unit Testing
– Verifies the functionality of a specific chunk of

code, usually at the function/class level

• Integration Testing
– Testing of combined modules as a whole

• System Testing
– Tests fully integrated system against requirements

• System Integration Testing
– Testing between multiple systems

4

Unit Testing

• A unit test is a piece of code written by a
developer that exercises a very small, specific
area of functionality in the code being tested.

• Usually a unit test exercises some particular
method in a particular context.

5

— Andy Hunt & Dave Thomas
 “Pragmatic Unit Testing”

Unit Testing

• Also known as component testing

• In OOP, typically ensures that a method/class
works as designed

• Written by developers to test their code.

– Also known as white box testing

6

Why Test?

• You wouldn’t do this without a safety net.

• Why develop your code without one?
7

When to Test

• How many of you write almost all of your code
and then write some tests …

– To fulfill project requirements?

– To exercise and test your code?

• How many of you incrementally write tests to
exercise code as your write it?

• Anyone write the tests first?

8

Pay Now or Pay Later

• It’s cheaper in the long run to “pay as you go.”

• Minimizes trying to solve many problems at
once at the end of your development cycle

9

Test Driven Development

• Test Driven Development (TDD) takes this “pay
early” approach a step further by requiring that
you write the tests before writing non-test code.

1. Add tests

2. Run tests, new tests should fail

3. Write code to satisfy tests

4. Re-run tests; all tests should pass

5. Refactor as needed

6. Repeat

10

Properties of Good Unit Tests

• What are things we aim for in good tests?
– Repeatable

• Should be able to be re-run producing the same results
(avoid randomness, getting current time, etc.)

– Independent
• Only test one feature (method) at a time.
• Tests should not be dependent upon one another.

– Provide value
• Testing simple getters/setters is probably not a good use of

time.

– Thorough
• Test all class invariants, pre/post conditions, edge cases.

11

Thoroughness

• In order for your tests to be thorough, you
need to check for several things.

– General Correctness

– Boundary Conditions

– Error Conditions

12

General Correctness

• These are the so-called easy tests to write.

• These test the “general” cases.

13

Boundary Conditions

• Ordering
– Does various ordering affect the outcome?

• Range
– zero, minimum, maximum, positive #s, negative #s

• Existence
– Null values for reference parameters
– Empty things

• Collections (e.g. arrays)
• Strings

• Cardinality
– Expected number of items

14

Error Conditions

• Are the right exceptions getting raised under
the right conditions?

• I/O issues

– Missing files

– Unreadable files

– Empty files

15

Exercise

• Identify test cases for the following method.

• What tests might we have for each of the
following areas?

– General correctness

– Boundary conditions

– Error conditions

16

 public static int largest(int[] list) {

 /* code */

 }

A Buggy Implementation

• How many of your tests failed on the following
buggy implementation of largest?

17

public static int largest(int[] list) {

 int max = Integer.MAX_VALUE;

 for(int i = 0; i < list.length - 1; i++) {

 if(list[i] > max) {

 max = list[i];

 }

 }

 return max;

}

A Much Improved largest Method

18

public static int largest(int[] list) {

 if(list == null) {

 throw new IllegalArgumentException("list cannot be null");

 } else if (list.length == 0) {

 throw new IllegalArgumentException("list cannot be empty");

 }

 int max = Integer.MIN_VALUE;

 for(int i = 0; i < list.length; i++) {

 if(list[i] > max) {

 max = list[i];

 }

 }

 return max;

}

Additional Resources

• Pragmatic Unit Testing in Java with JUnit

– Free Introduction chapter

– Free testing Summary cheat-sheet

• JUnit Test Infected: Programmers Love Writing
Tests

19

http://pragprog.com/titles/utj/pragmatic-unit-testing-in-java-with-junit
http://media.pragprog.com/titles/utj/whatis.pdf
http://media.pragprog.com/titles/utj/StandaloneSummary.pdf
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm

