
Static Members & Methods

CMSC 202

2

What Does “static” Mean?

•  Instance variables, constants, and methods
may all be labeled as static.

•  In this context, static means that the
variable, constant, or method belongs to
the class.

•  It is not necessary to instantiate an object
to access a static variable, constant or
method.

3

Static Constants
•  A static constant may either be public or private.

–  The value of a static defined constant cannot be altered. Therefore it is
safe to make it public. Making it public allows client programmers to
use it.

–  A private constant can only be used within the class definition.
–  The declaration for a static defined constant must include the modifier

final, which indicates that its value cannot be changed.

 public static final int INVENTED = 1769;

 public static final String INVENTOR = "Nicolas-Joseph Cugnot";

•  Static constants belong to the class as a whole, not to each object, so
there is only one copy of a static constant. It is available to the client
programmer (if it’s public) and to all objects of the class.

•  When referring to such a defined constant outside its class, use the

name of its class in place of a calling object.

int year = Car.INVENTED;
String inventor = Car.INVENTOR;

4

Static Variables
•  A static variable belongs to the class as a whole, not just

to one object.

•  There is only one copy of a static variable per class.

•  All the member functions of the class can read and

change a static variable.

•  A static variable is declared with the addition of the

modifier static.
private static int myStaticVariable;

•  Static variables can be declared and initialized at the
same time.

private static int myStaticVariable = 0;

Static Variables vs. Instance Variables
•  Instance variables are local to the instance in which they are created.

Notice the results of a mutator modifying the value contained.

private static int numWheels = 4;
public int getNumWheels(){
 return numWheels;
}
public void setNumWheels(int nWheels){
 numWheels = nWheels;
}
public static void main(String args[]){
 Car defaultCar = new Car();
 Car chevy = new Car("9431a",2000,"Chevy","Cavalier");
 Car dodge = new Car("8888","Orange","Dodge","Viper", 5,400,2,1996);
 System.out.printf("NumWheels: chevy %d dodge %d default %d%n", chevy.getNumWheels(),
 dodge.getNumWheels(), defaultCar.getNumWheels());
 dodge.setNumWheels(-2);
 System.out.printf("NumWheels: chevy %d dodge %d default %d%n", chevy.getNumWheels(),
 dodge.getNumWheels(), defaultCar.getNumWheels());
 chevy.setNumWheels(5);
 System.out.printf("NumWheels: chevy %d dodge %d default %d%n", chevy.getNumWheels(),
 dodge.getNumWheels(), defaultCar.getNumWheels());
}

NumWheels: chevy 4 dodge 4 default 4
NumWheels: chevy -2 dodge -2 default -2
NumWheels: chevy 5 dodge 5 default 5

static variables can be changed!!!

6

Static Methods
So far,
•  class methods required a calling object in order to be invoked.

–  These are sometimes known as non-static methods.

Static methods:
•  Still belong to a class, but need no calling object, and often provide

some sort of utility function.
•  Static methods are called on the class name (as opposed to an

instance name)

 Car myCaddy = new Car("82978",2011,"Cadillac","Escalade");
 System.out.println("My Caddy "+ ((myCaddy.hasSpoiler())? "a spoiler" :
 "no spoiler"));

public static Car[] findAntiques(Car[] cars) { /* ... */ }

Car[] antiques = Car.findAntiques(cars);
for(Car c: antiques) {
 System.out.println(c);
} Use the class name to

call the static function.

7

Rules for Static Methods
•  Static methods have no calling/host object (they have no
this).

•  Therefore, static methods cannot:

–  Refer to any instance variables of the class
–  Invoke any method that has an implicit or explicit this for a

calling object

•  Static methods may invoke other static methods or refer
to static variables and constants.

•  A class definition may contain both static methods and

non-static methods.

8

Static Temperature Converting Examples

public class Temperature {

 public static double convertFahrenheitToCelsius(double degreesF){
 return 5.0/9.0 * (degreesF - 32);
 }

 public static double convertFahrenheitToKelvin(double degreesF){
 return (degreesF + 459.67) * (5.0/9.0);
 }

 public static void main(String[] args){
 double degreesF = 100;

 // since we have 2 static methods, no instances
 // of the TemperatureConverter class are required
 System.out.printf("%f degrees Fahrenheit%n", degreesF);
 System.out.printf(" is %f Celsius%n",
 Temperature.convertFahrenheitToCelsius(degreesF));

 System.out.printf("is %f Kelvin%n",
 Temperature.convertFahrentoKelvin(degreesF));
 }
}

9

main is a Static Method

Let us take note that the method signature of
main() is

public static void main(String [] args)

Being static has two effects:
•  main can be executed without an object.
•  “Helper” methods called by main must also

be static.

Version 9/10 10

Any Class Can Have a main()

•  Every class can have a public static
method name main().

•  Java will execute main in whichever class
is specified on the command line.

 java <className>

•  A convenient way to write test code for your
class.

11

Static Review
•  Given the skeleton class definition below

public class C
{
public int a = 0;
public static int b = 1;

public void f() {…}
public static void g() {…}

}

•  Can body of f() refer to a?
•  Can body of f() refer to b?
•  Can body of g() refer to a?
•  Can body of g() refer to b?
•  Can f() call g()?
•  Can g() call f()?

–  For each, explain why or why not.

12

The Math Class (Static Class)
•  The Math class provides a number of standard

mathematical methods.

–  All of its methods and data are static.

•  They are invoked with the class name Math instead of a
calling object.

–  The Math class has two predefined constants,
 E (e, the base of the natural logarithm system)

and PI (π, 3.1415 . . .).

 area = Math.PI * radius * radius;

13

Wrapper Classes
•  Wrapper classes

–  Provide a class type corresponding to each of the primitive types

–  Makes it possible to have class types that behave somewhat like
primitive types

–  The wrapper classes for the primitive types:

byte, short, int, long, float, double, and char
 are (in order)

 Byte, Short, Integer, Long, Float, Double,
and Character

–  Wrapper classes also contain useful
•  predefined constants
•  static methods

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

14

Constants and Static Methods
 in Wrapper Classes

•  Wrapper classes include constants that provide
the largest and smallest values for any of the
primitive number types.

–  Integer.MAX_VALUE, Integer.MIN_VALUE,
Double.MAX_VALUE, Double.MIN_VALUE, etc.

•  The Boolean class has names for two constants

of type Boolean.

–  Boolean.TRUE corresponds to true
–  Boolean.FALSE corresponds to false

of the primitive type boolean.

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
	 All	 rights	 reserved	

15

Constants and Static Methods
in Wrapper Classes

•  Some static methods convert a correctly formed string representation
of a number to the number of a given type.

–  The methods Integer.parseInt(), Long.parseLong(),
Float.parseFloat(), and Double.parseDouble()

 do this for the primitive types (in order) int, long, float, and double.

•  Static methods convert from a numeric value to a string
representation of the value.

–  For example, the expression

Double.toString(123.99);

 returns the string value "123.99"

•  The Character class contains a number of static methods that are

useful for string processing.

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
	 All	 rights	 reserved	

16

Wrappers and
Command Line Arguments

•  Command line arguments are passed to main via its parameter
conventionally named args.

public static void main (String[] args)

•  For example, if we execute our program as

 java proj1.Car Shelby Cobra 1967

 then args[0] = “Shelby”, args[1] = “Cobra”, and args[2] = “1967”.

•  We can use the static method Integer.parseInt() to change the

argument “1967” to an integer variable via

–  Each Wrapper Class has the ability to parse its primitive type from

a string

 int year = Integer.parseInt(args[2]);

17

Boxing
•  Boxing: The process of converting from a value

of a primitive type to an object of its wrapper
class.
–  Create an object of the corresponding wrapper class

using the primitive value as an argument
–  The new object will contain an instance variable that

stores a copy of the primitive value.

–  Unlike most other classes, a wrapper class does not
have a no-argument constructor.

–  The value inside a Wrapper class is immutable.

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
	 All	 rights	 reserved	

Integer integerObject = new Integer(5);

18

Unboxing
•  Unboxing: The process of converting from an object of a

wrapper class to the corresponding value of a primitive
type.

–  The methods for converting an object from the wrapper classes
 Byte, Short, Integer, Long, Float,

 Double, and Character
 to their corresponding primitive type are (in order)

 byteValue, shortValue, intValue,
 longValue, floatValue, doubleValue,
 and charValue.

–  None of these methods take an argument.

 int i = integerObject.intValue();

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	
	 All	 rights	 reserved	

19

Automatic Boxing and Unboxing
Starting with version 5.0, Java can automatically do boxing and unboxing for you.

•  Boxing:

 rather than:

•  Unboxing:

 rather than:

Copyright	 ©	 2008	 Pearson	 Addison-‐Wesley.	 	
All	 rights	 reserved	

Integer integerObject = new Integer(5);

Integer integerObject = 5;

int i = integerObject;

int i = integerObject.intValue();

