
Interfaces

CMSC 202

Public Interfaces

 Objects define their interaction with the outside
world through the their public interface.

 A class' public interface is the set of public
members that a user can access.

 Public non-static members & methods

 Public static members & methods

2

Public Interface

 An interface is a group of related methods that
multiple objects have in common, but might
function slightly different.

 For instance all Vehicles

 Speed up

 Slow down

 Turn

3

Java Interfaces

 Interfaces in Java are a set of behaviors that
are common to multiple classes.

 The implementation of an Interface is similar to
a class, except that interfaces:

 Use the keyword interface instead of class

 Can only contain public methods, variables, and
constants

 Methods do not contain a body.

 All methods are implicitly abstract.

4

Java Interface

 Each method defined in the interface does not
have a body.

 Interfaces can only have initialized variables.

 Any class that has the same methods defined in
the interface may implement Drivable.

public interface Drivable {

 void accelerate(int amount);

 void decelerate(int amount);

 void move(int time);

 void turn(int radians);

 double pi = 3.141;

}

5

Implementing Interfaces

 A class that uses an interface must

 Use the keyword implements

 Define all methods that are part of the interface

public class Vehicle implements Drivable{

 public void accelerate(int amount){

 // accelerate like a Vehicle

 }

 public void decelerate(int amount){

 // decelerate like a Vehicle

 }

 public void turn(int radians){

 // turn like a Vehicle

 }

 public void move(int time){

 // move like a Vehicle

 }

}

6

Interfaces

 All methods are implicitly abstract.

 A class that implements an interface must
implement all methods defined in the interface in
order to be concrete.

 A class that does not implement all methods must
be labeled as abstract when appropriate.

 Interfaces can be used as a reference variable
type.

 All of the rules of polymorphism apply.

 Drivable thing = new Vehicle();

7

Comparable

 Comparable is an interface defined in the Java
API that is used to provide an ordering of
objects of the same type.

 A class that implements comparable must
define the compareTo() method.

 When invoked, a.compareTo(b) returns

 a negative number if a < b

 0 if a == b

 a positive number if a > b

8

Comparable

 Here, we are alphabetically ordering cars by their make and then their
model.

public class Car extends Vehicle implements Comparable<Car>{

 private String make, model;

 public int compareTo(Car other){

 int result = this.make.compareTo(other.make);

 if(result < 0 || result > 0){

 return result;

 }

 else{

 return model.compareTo(other.model);

 }

 }

 public static void main(String[] args){

 Comparable car1 = new Car();

 Car car2 = new Car();

 String solution = "";

 switch(car1.compareTo(car2)){

 case -1: solution = " preceeds "; break;

 case 0: solution = " same "; break;

 case 1: solution = " succeeds "; break;

 }

 System.out.println("car 1" + solution "car 2");

 }

}

9

Conventions

 All interface methods must have thorough
javadoc comments. These must include the
intended purpose of the method.

 compareTo is supposed to return specific
values when invoked. This is a convention of
the interface and is enforced by the Java
compiler.

 The following implementation is syntactically
correct, but violates the intended usage.

public int compareTo(Car other){

 return 0;

}
10

Design By Contract

 Design by Contract is a metaphor on how
elements of a software program collaborate with
each other on the basis of mutual obligations
and benefits.

 The supplier must provide a certain product (obligation) and is entitled to
expect that the client has paid its fee (benefit).

 The client must pay the fee (obligation) and is entitled to get the product
(benefit).

 Both parties must satisfy certain obligations, such as laws and
regulations, applying to all contracts.

11

Design by Contract

 Part of design by contract is defined in the pre
and post conditions defined by the supplier.

 Preconditions – program state conditions that a
user has to implement

 Postconditions – program state upon exit of the
method

 The contract is a formalization of obligations
and benefits.

 What does it expect?

 What does it guarantee?

 What does it maintain?
12

Interface Hierarchy

 Interfaces can be used as the base “class” of
other interfaces.

 You can derive an interface from another interface
using the keyword extends.

 A derived interface inherits all the methods of the
base interface.

 To implement a derived interface, all methods must
be implemented by the class.

 Since interfaces can be used as reference
variables, they can add to class hierarchies.

13

Class Hierarchy

Drivable

Vehicle

Automobile Aircraft

Car Plane Motorcycle

Horse

Helicopter

14

Interfaces and Polymorphism

 We can use interfaces to increase the extensibility of our code.

 We can write methods that require object to implement an interface
instead of being a class.

 public static void selectionSort(Comparable<T>[] items){

 int minPos;

 int minItem;

 for(minPos = 0; minPos < items.length; minPos++){

 minItem = minPos;

 for(int i = minPos + 1; i < items.length; i++){

 if(items[i].compareTo(items[minItem]) < 0){

 // found a new minimum

 minItem = i;

 }

 }

 if(minItem != minPos){

 Comparable tmp = items[minItem];

 items[minItem] = items[minPos];

 items[minPos] = tmp;

 }

 }

}

15

Multiple Inheritance

 Java does not support multiple inheritance with
classes.

 You can not say Class X extends X, Y

 However, Java does allow a class to implement
multiple interfaces.

public class Liger implements Tiger, Lion

16

Multiple Interfaces

 The class Liger must implement all methods in
both Lion and Tiger.

 Liger can now be referenced by either Lion or
Tiger, but is limited to the interface defined in
Lion or Tiger, respectively.

Lion Tiger

Liger

17

Multiple Interfaces

 No Java syntax errors will occur for methods
that “overlap” from Lion and Tiger.

 But in languages like C++, many problems arise
from a “Diamond of Death”.

public interface Lion{

 public void eat();

}

public interface Tiger{

 public void eat();

}

public class Liger implements Lion, Tiger{

 public void eat() {

 // should I eat like a lion or tiger?

 }

}

18

