
CMSC 202

Generics I

1

2

Generalized Code

 One goal of OOP is to provide the ability to
write reusable, generalized code.

 Polymorphic code using base classes is
general, but restricted to a single class
hierarchy.

 Generics is a more powerful means of writing
generalized code that can be used by any
class in any hierarchy represented by the type
parameter.

3

Containers

 Almost all programs require that objects be stored

somewhere while they are being used.

 A container is a class used to hold objects in some

meaningful arrangement.

 Generics provide the ability to write generalized

containers that can hold any kind of object.

 Yes, arrays can hold any kind of object, but a

container is more flexible.

 Different types of containers can arrange the

objects they hold in different ways.

4

Simple Container

The container class below models a SpecificBox used to
hold a String.

public class SpecificBox {
 private String item;

 public SpecificBox(String s){
 item = s;
 }

 public String getItem(){
 return item;
 }
}

 This SpecificBox is limited to only holding String
objects. It is very specific in its uses.

5

A More General Box

By using the Java Object class and inheritance, we can use
our Box to hold any kind of Object. (Why?)

public class ObjectBox {
 private Object item;

 public ObjectBox(Object o){
 item = o;
 }

 public Object getObject(){
 return item;
 }
}

 But this approach can lead to some interesting code
and runtime exceptions.

6

Object Box Example

public static void main(String[] args){
 ObjectBox box1 = new ObjectBox(new String("HI"));

 // downcast a String to an Integer?
 Integer i = (Integer)box1.getObject();
}

 Object is the base class of all classes in Java.

 Using an Object reference variable can lead to a number of
runtime exceptions.

 Special case code would have to be made for every type of
derived object that was put in the ObjectBox.

Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be

cast to java.lang.Integer at Generics.ObjectBox.main(ObjectBox.java:17)

7

One Type per Container

 Using generics, we specify the one type of

object that our container holds and use the

compiler to enforce that specification.

 The type of object held in our container is

specified by a type parameter.

8

Class Definition with a Type Parameter

 A class that is defined with a parameter for a type is
called a generic class or a parameterized class.

 The type parameter is included in angular brackets
after the class name in the class definition
heading.

 Any non-keyword identifier can be used for the
type parameter. But by convention, the parameter
starts with an uppercase letter.

 The type parameter can be used like other types
used in the definition of a class.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

9

Generic Box

 A class definition with a type parameter is stored in a file

and compiled just like any other class.

 Once a parameterized class is compiled, it can be used

like any other class.

 However, the class type plugged in for the type parameter must

be specified before it can be used in a program.

public class GenericBox<Type> {
 private Type item;
 public GenericBox(Type item){
 this.item = item;
 }
 public Type getItem(){
 return item;
 }
 public void setItem(Type newItem){
 this.item = newItem;
 }
}

10

Generic Box Example

public static void main(String[] args) {

 GenericBox<String> box1 = new GenericBox<String>("Charlie Sheen");
 GenericBox<Integer> box2 = new GenericBox<Integer>(new Integer(2));

 String thingInTheContainer = box1.getItem(); // Works fine

 // Compiler errors when we try to use Integers with a String box

 Integer thingInTheContatiner2 = box1.getItem();
 box1.setItem(new Integer(2));
}

 Declaring a reference variable to a generic Object
requires you to specify the Type.

 The Type that is specified provides syntax checking to
make sure that you are not trying to insert an Integer
into a box that was meant for Strings.

11

A Generic Constructor Name Has No Type Parameter

 Although the class name in a parameterized class definition
has a type parameter attached, the type parameter is not used
in the heading of the constructor definition.

public GenericBox()

 A constructor can use the type parameter as the type for a
parameter of the constructor. But in this case, the angle
brackets are not used.

public GenericBox(T item);

 However, when a generic class is instantiated, the angle
brackets are used.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

 GenericBox<String> box1 =

 new GenericBox<String>(“Charlie Sheen”);

12

A Primitive Type Cannot be Plugged in for a Type

Parameter

 The type plugged in for a type parameter must

always be a reference type.

 It cannot be a primitive type such as int, double,

or char.

 However, now that Java has automatic boxing for

wrapper classes, this is not a big restriction.

 Note: Reference types can include arrays.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

13

Pitfall: A Type Parameter Cannot Be Used

Everywhere a Type Name Can Be Used

 Within the definition of a parameterized class
definition, there are places in the generic class’
methods where an ordinary class name would be
allowed, but a type parameter is not allowed.

 In particular, the type parameter cannot be used in
simple expressions using “new” to create a new
object.

 For instance, the type parameter cannot be used
as a constructor name or like a constructor.

T object = new T();

T[] a = new T[10];

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

14

Pitfall: An Instantiation of a Generic Class Cannot be

an Array Base Type

 Arrays such as the following are illegal.

 Although this is a reasonable thing to want to do, it is

not allowed given the way that Java implements

generic classes.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

GenericBox<Integer>[] array = new GenericBox<Integer>[5];

ArrayList<GenericBox<Integer>> arraylist;
arraylist = new ArrayList<GenericBox<Integer>>(5);

• Use an ArrayList instead.

15

A Class Definition Can Have More Than One Type

Parameter

 A generic class definition can have any

number of type parameters.

 Multiple type parameters are listed in angle

brackets just as in the single type parameter case.

 The type parameters are separated by commas.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

16

Multi-Type Generic Objects
public class MultiType<Type1, Type2> {

 private Type1 item1;
 private Type2 item2;

 public MultiType(Type1 i1, Type2 i2) {
 item1 = i1;
 item2 = i2;
 }

 public static void main(String[] args) {
 MultiType<String, Integer> container1 =
 new MultiType<String, Integer>("Johnny", 5);
 MultiType<String, String> container2 =
 new MultiType<String, String>("Johnny", "Five");
 }
}

 All the rules about parameterized types are still enforced with
generic classes that have multiple parameterized types.

17

Invoking Methods of Typeless Variables

 What interface does Type provide?

 Java cannot know what the interface of Type is during compile time.
This means we cannot invoke specific methods on variables of type
Type.

 Variables of Type are limited to the interface of Object because all
classes are derived from object.

 All objects can invoke the toString() method even though they did
not define it in the class.

public class GenericBox<Type> {

 private T item;

 public void doSomething(){
 item.function();
 SomeType tmp = item.publicVariable;
 System.out.println("Item: " + item);
 }

18

Ordering Generic Boxes

 Suppose we want to implement compareTo() for GenericBox.

 A syntax error will appear when we attempt to invoke the compareTo()
method of an object of type Type.

 Java can only assume that Type is an Object!!!

public class GenericBox<Type> implements Comparable<GenericBox<Type>> {

 private Type item;

 public GenericBox(Type item) {
 this.item = item;
 }

 public int compareTo(GenericBox<Type> other){
 return this.item.compareTo(other.item);
 }
 public static void main(String[] args){
 GenericBox<String> box1 = new GenericBox<String>("Derp");
 GenericBox<String> box2 = new GenericBox<String>("Herp");
 box1.compareTo(box2);
 }
}

19

Bounds for Type Parameters

 Sometimes it makes sense to restrict the
possible types that can be plugged in for a
type parameter T.

 For instance, to ensure that only classes that
implement the Comparable interface are plugged
in for T, define a class as follows.

public class RClass<T extends Comparable<T>>

 "extends Comparable<T>" serves as a bound on the type
parameter T.

 Any attempt to plug in a type for T which does not implement the
Comparable interface will result in a compiler error message.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

20

Bounding the GenericBox Example

public class GenericBox<Type extends Comparable<Type>> implements

 Comparable<GenericBox<Type>> {
 private Type item;
 public GenericBox(Type item) {
 this.item = item;
 }

 public int compareTo(GenericBox<Type> other){
 return this.item.compareTo(other.item);
 }

 public static void main(String[] args){
 GenericBox<String> box1 = new GenericBox<String>("Derp");
 GenericBox<String> box2 = new GenericBox<String> ("Herp");
 box1.compareTo(box2);
 }
}

 We have to bound Type to extend Comparable<Type> so that in GenericBox's
compareTo() method we are able to invoke compareTo() on item.

 Java will require an object in this container to be a descendant of Comparable.
(implementing comparable).

21

Bounds for Type Parameters

 A bound on a type may be a class name.

 Then, only descendent classes of the bounding class
may be plugged in for the type parameters.

 public class ExClass<T extends Class1>

 A bounds expression may contain multiple interfaces and
up to one class.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

