
Debugging

CMSC 202

Overview

• Debugging

• Error Types

• Stack Traces

• Probing

• Eclipse debugger

2

Debugging

• Debugging is a methodical process of finding
and reducing the number of bugs, or defects,
in a computer program or a piece of electronic
hardware, thus making it behave as expected.

• Debugging tends to be harder when various
subsystems are tightly coupled, as changes in
one may cause bugs to emerge in another.

—Wikipedia

3

Error/Bug Types

• Compile time errors
– Bugs caught by compiler

• Syntax errors

• Runtime errors that terminate program execution
– Bugs caught by the runtime system

• NullPointerException
• ArrayIndexOutOfBoundsException

• Runtime errors that do not terminate the
program
– Bugs not caught by the runtime system, but hopefully

caught by developer
• Logic errors

4

Stack Trace

• A stack trace is a dump of the active stack
frames at a given point in execution time.

• In Java, when the JVM detects an error
condition (such as trying to invoke a method
on a null reference), it raises an exception
resulting in a stack trace.

• This stack trace shows you where the error
originated from and how it came to be
executed.

5

Reading a Stack Trace

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at Bar.derp(Bar.java:8)

 at Foo.herp(Foo.java:6)

 at Test.main(Test.java:7)

Exception Error Message

Stack trace

The source of the error is at the top of the stack trace

6

Errors Inside a Java-Provided Class

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 12, Size: 0

 at java.util.ArrayList.RangeCheck(ArrayList.java:547)

 at java.util.ArrayList.remove(ArrayList.java:387)

 at Bar.derp(Bar.java:12)

 at Foo.herp(Foo.java:6)

 at Test.main(Test.java:7)

Sometimes errors originate in
a class that’s provided by Java.

This is where the error manifested
itself, though the cause is almost
always in your code up the stack.

Scan from the top down looking for
the first reference to your code. That’s

usually a good place to start looking.

7

Tracing with Print Statements

• Print (a.k.a. tracing, probing) debugging is the
act of watching (live or recorded) trace
statements, or print statements, that indicate
the flow of execution of a pr.ocess

8

—Wikipedia

Tracing with Print Statements

• Once you’ve identified the location of the
error (by reading the stack trace), start
printing out variables.

• This can be as basic as simply printing out all
local variables, members, objects, parameters,
etc. using System.out.println().

• Having a working toString() method for
all of your objects really aids in this debugging
process.

9

Debugger

• A special program used to find errors (bugs) in
other programs.

• A debugger allows a programmer to stop a
program at any point and examine and change
the values of variables.

10

—Webopedia

Eclipse Debugger

• Eclipse has a built-in perspective that is
dedicated to debugging Java code.

• To run a program in the debugger, simply right
click on the class to run and select…
– Debug As → Java Application

• Allow Eclipse to open the Debug perspective if
it asks.

• If you do nothing else, Eclipse will simply run
your program just like a normal “Run As”.

11

Breakpoints

• Breakpoints can be used to pause your
program at a certain point.

• Once paused, you can examine (and even
change) the state of variables.

• There are many different ways to break…
– Line

– Method

– Member change

– Etc.

12

Line Breakpoints

• To set a breakpoint on a line, simply double click
in the gutter left of the line to stop on.

• Once you do so, you’ll see a small blue bubble in
the gutter like so…

• Notes
– Simply double click again to toggle the breakpoint off.
– In order to break on a line, there must be an

executable statement (e.g. you cannot break on a
curly brace).

13

14

Variable/Break
point Tables Stack Frames

Current Line

Breakpoint View

15

Toggle individual
breakpoints on/off

Easily toggle ALL
breakpoints on/off

Variable View

16

Variables in
Scope

Double Click to
change current

values

Hover to View Variable Values

17

Continuing Execution

• If you click the resume button in the Debug
view, execution will continue until the next
breakpoint is encountered.

18

Stepping

19

• There are several step buttons that allow you to
walk through the execution of your code.
– Step Into

• If the line contains a method call, step into that method and
pause execution.

– Step Over
• Completely execute this line (including any method calls)

and pause execution at the next line.

– Step Return
• Complete the current method and pause execution where

the method was called from.

Stack Frames

• Eclipse’s Debug view also shows you stack frames
so you can see how you got somewhere.

– Current stack frame is at the top, main should be at
the bottom

20

Method Breakpoints

• Double clicking on the margin next to method
will create a method entry breakpoint.

– Right click → Breakpoint Properties… allows you
to also set exit breakpoint.

21

Watching Members

• You can also set breakpoints (also called watch
points) to see when a member is being
accessed or changed.

• Simply double click next to the member and it
will set both breakpoints.

– Double click again to toggle off

– Right click → Breakpoint Properties… to change

22

Additional References

• Java Logging Overview

– http://download.oracle.com/javase/1.5.0/docs/guide/
logging/overview.html

• Lars Vogel’s Java Logging API Tutorial

– http://www.vogella.de/articles/Logging/article.html

• Lars Vogel’s Java Debugging with Eclipse Tutorial

– http://www.vogella.de/articles/EclipseDebugging/arti
cle.html

23

http://download.oracle.com/javase/1.5.0/docs/guide/logging/overview.html
http://download.oracle.com/javase/1.5.0/docs/guide/logging/overview.html
http://www.vogella.de/articles/Logging/article.html
http://www.vogella.de/articles/EclipseDebugging/article.html
http://www.vogella.de/articles/EclipseDebugging/article.html

