
CMSC 202

Containers

Container Definition

• A “container” is a data structure whose purpose
is to hold objects.

• Most languages support several ways to hold
objects.
– Arrays are compiler-supported containers.

– Language libraries provide a set of classes.

• Java supports two primary kinds of container
interfaces
– Collections contain a sequence of individual

elements.

– Maps contain a group of key-value object pairs.

The Collection Landscape

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Wildcards

• Classes and interfaces in the collection
framework can have parameter type
specifications that do not fully specify the type
plugged in for the type parameter.
– Because they specify a wide range of argument

types, they are known as wildcards.

public void method(String arg1, ArrayList<?> arg2)

– In the above example, the first argument is of type
String, while the second argument can be an
ArrayList<T> with any base type.

16-4 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Wildcards

• A bound can be placed on a wildcard specifying
that the type used must be an ancestor type or
descendent type of some class or interface.

– The notation <? extends String> specifies that
the argument plugged in must be an object of any
descendent class of String.

– The notation <? super String> specifies that the
argument plugged in must be an object of any
ancestor class of String.

16-5 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Collection<T> Interface
• The Collection<T> interface generalizes the concept of a sequence

of elements.

• Basic Collection<T> operations include
– No-argument and copy constructors

– boolean contains(Object x) – returns true if at least one instance of x is
in the collection

– boolean containsAll(Collection<?> targets) – returns true if all targets
are contained in the calling collection object

– boolean equals(Object x) – This is equals for the collection, not the
elements in the collection. Intuitive meaning.

– Object[] toArray() – returns an array containing all of the elements

– boolean add(T element) – ensures that the calling collection object
contains the specified element. (optional)

– boolean addAll(Collection<? extends T> collectionToAdd) – ensures
that the calling collection object contains all elements of collectionToAdd
(optional)

– boolean remove(T element) – removes a single instance of the element
from the calling collection object (optional)

– boolean removeAll(Collection<?> collectionToRemove) – removes all
elements contained in collectionToRemove from the calling collection
object (optional)

– void clear() – removes all elements from the calling collection object
(optional)

Collection Relationships

• There are a number of different predefined classes that
implement the Collection<T> interface.

– Programmer defined classes can implement it also.

• A method written to manipulate a parameter of type
Collection<T> will work for all of these classes, either
singly or intermixed.

• There are two main interfaces that extend the
Collection<T> interface.
– The Set<T> interface

– The List<T> interface

16-7 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Collection Relationships

• Classes that implement the List<T> interface have
their elements ordered as on a list.

– Elements are indexed starting with zero.

– A class that implements the List<T> interface allows elements
to occur more than once.

– The List<T> interface has more method headings than the
Collection<T> interface.

– Some of the methods inherited from the Collection<T>
interface have different semantics in the List<T> interface.

– The ArrayList<T> class implements the List<T> interface.

16-8 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Some methods in the List<T>

Interface

• Semantics for methods defined in Collection<T>

– equals() returns true if the calling object and

argument have the same element in the same

order.

– toArray() returns the copies of the elements (not

references) in the same order.

– add() places the new element at the “end” of the

list.

New Methods in the List<T>

Interface (1 of 6)

16-10 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

New Methods in the List<T>

Interface (Part 2 of 6)

16-11 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

New Methods in the List<T>

Interface (Part 3 of 6)

16-12 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

New Methods in the List<T>

Interface (Part 4 of 6)

16-13 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

New Methods in the List<T>

Interface (Part 5 of 6)

16-14 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

New Methods in the List<T>

Interface (Part 6 of 6)

16-15 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Classes That Implement List<T>

• If you do not need any methods beyond those
defined in List<T>, but need a List that provides
fast random access to the elements (the get()
method), use ArrayList<T> (or the older
Vector<T>).
– But note that inserting or deleting from the middle of

the ArrayList or Vector will be slow.

• If you do not need fast random access, but
require efficient sequential access through the
list, use LinkedList<T>.
– Inserting or deleting from the middle of the LinkedList

is faster than with ArrayList or Vector.

List<T> example code
public class ListExample {

 public static void main(String[] args)

 {

 // Note the use of List<Integer> here

 List<Integer> list = new ArrayList<Integer>();

 // add elements to the end of the list

 for (int k = 0; k < 10; k++)

 list.add(k*2); // autoboxing

 for (Integer k : list)

 System.out.print(k + “, “);
 System.out.println();

 // remove element at index 4

 list.remove(4);

 for (Integer k : list)

 System.out.print(k + “, “);
 System.out.println();

 (continued)

List<T> example code
 // insert 99 at index 2

 list.add(2, 99);

 for (Integer k : list)

 System.out.print(k + “, “);
 System.out.println();

 // change the value at index 3 to 77

 list.set(3, 77);

 for (Integer k : list)

 System.out.print(k + “, “);
 System.out.println();

 }

}

// Output ---

0, 2, 4, 6, 8, 10, 12, 14, 16, 18,

0, 2, 4, 6, 10, 12, 14, 16, 18,

0, 2, 99, 4, 6, 10, 12, 14, 16, 18,

0, 2, 99, 77, 6, 10, 12, 14, 16, 18,

The Collections Class

In addition to the Collection<T> interface, Java
provides the Collections class that contains
static methods to operate on or return
collections.

Some methods of this class related to List are:
static void reverse(List<?> list)

 that reverses the contents of the specified list.

static <T extends Comparable<? super T>

void sort(List<T> list)

 that sorts the specified list

static void <T>

copy(List<? super T> dest, List<? extends T> source)

 copies source List to destination List

Collection Relationships

• Classes that implement the Set<T> interface do
not allow an element in the class to occur more
than once.

– The Set<T> interface has the same method headings

as the Collection<T> interface, but in some cases
the semantics (intended meanings) are different.

– Methods that are optional in the Collection<T>
interface are required in the Set<T> interface.

16-20 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Methods in the Set<T> interface

• The Set<T> interface has the same method headings

as the Collection<T> interface, but in some cases the

semantics are different. For example, the add methods:

16-21 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

 public boolean add(T element) (Optional)

If element is not already in the calling object, element is added to the calling object and true is

returned. If element is in the calling object, the calling object is unchanged and false is returned.

public boolean addAll(Collection<? extends T> collectionToAdd)

(Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if

the calling object changed as a result of the call; returns false otherwise. Thus, if
collectionToAdd is a Set<T>, then the calling object is changed to the union of itself

with collectionToAdd.

Classes that implement Set<T>

• All classes that implement Set<T> disallow

duplicate elements.

• If you just need a collection that does not

allow duplicates, use HashSet<T>.

• If you also need fast sorted element

access, use TreeSet<T>.

More Collections Methods

Some methods of the Collections class

related to Sets include:

static <T> Set<T> singleton(T obj)

 that returns an immutable set containing only the

specified object

static <T> Set<T> emptySet()

 that returns an (immutable) empty set

The Map Framework

• The Java map framework deals with collections of
ordered pairs.
– For example, a key and an associated value

• Objects in the map framework can implement
mathematical functions and relations, so can be used to
construct database classes.

• The map framework uses the Map<T> interface, the
AbstractMap<T> class, and classes derived from the
AbstractMap<T> class.

16-24 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

The Map Landscape

16-25 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Map<K,V>

Interface

SortedMap<K,V> AbstractMap<K,V>

Im
plem

ents

TreeMap<K,V> HashMap<K,V>

Im
p

le
m

e
n
ts

Abstract Class

Concrete Class

A single line between two boxes means

the lower class or interface is derived

from (extends) the higher one.

K and V are type parametersfor the type of

the keys and elements stored in the map.

Basic Map<K, V> Interface
• No-argument and copy constructors

• public boolean containsValue(Object value) – returns true
if the calling map object contains at least one key that
maps to the specified value

• public V get(Object key) – returns the value to which the
calling object maps the key. Returns null if the key is not in
the map.

• public V put(K key, V value) – associates the key with the
value in the map. If the key is already in the map, its old
value is replaced by the value argument and returned.
Otherwise null is returned. (optional)

• public void putAll(Map<? extends K, ? extends V> toAdd) –
adds all mappings from toAdd to the calling map object

• public V remove(Object key) – removes the mapping for
the specified key.

Classes that implement Map<K, V>

• If you require rapid access to the value

associated with a key, use the HashMap<K, V>

class.

– HashMap provides no guarantee as to the order of

elements placed in the map.

• If you require the elements to be in sorted order

by key, then you should use the TreeMap<K,V>.

• If you require the elements to be in insertion

order, use the LinkedHashMap<K,V> class.

16-27 Copyright © 2008 Pearson Addison-Wesley. All rights reserved

