
Polymorphism I

CMSC 202

2

Topics

l  Binding (early and late)
l  Upcasting and downcasting
l  Extensibility
l  The final modifier with

l  methods
l  classes

3

Introduction to Polymorphism
l  Object-oriented programming mechanisms

l  Encapsulation - data and methods together
l  Inheritance - extending a class for specialization
l  Polymorphism

l  Polymorphism
l  The ability to associate many meanings with one

method name.
l  Accomplished through a mechanism known as
late binding or dynamic binding.

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

4

Vehicle Hierarchy

Vehicle

Automobile Aircraft Watercraft

5

Identifying Classes of Vehicles
public class Vehicle {

 public void identify(){ System.out.println("Vehicle"); }
}

public class Automobile extends Vehicle {
 public void identify(){ System.out.println("Automobile"); }

}

public class Aircraft extends Vehicle {
 public void identify(){ System.out.println("Aircraft"); }

}

public class Watercraft extends Vehicle {
 public void identify(){ System.out.println("Watercraft"); }

}

l  We have implemented the identify() method defined in the base class and overidden in
the derived classes. Each is a more specific definition of the base class' method.

6

The Vehicle Classes
In the VehicleDemo, we ask each Vehicle to identify itself.

q  This is a poor example of OOP as we will see...
public class VehicleDemo {
 public void identifyYourself(Automobile a){
 a.identify();
 }
 public void identifyYourself(Aircraft a){
 a.identify();
 }
 public void identifyYourself(Watercraft a){
 a.identify();
 }

 public static void main(String[] args){
 Automobile m = new Automobile();
 Watercraft w = new Watercraft();
 Aircraft a = new Aircraft();

 VehicleDemo demo = new VehicleDemo();
 demo.identifyYourself(m);
 demo.identifyYourself(a);
 demo.identifyYourself(w);
 }
}

Automobile
Aircraft
Watercraft

Output

7

Problems with VehicleDemo?
l  The VehicleDemo class contains a type-

specific version of identifyYourself for each
type of Vehicle.

l  What if we add more types of Vehicles?

l  Wouldn’t it be nice to write just one

identifyYourself method that works for all
Vehicles?

8

NewVehicleDemo

public class NewVehicleDemo {
 public void identifyYourself(Vehicle v){
 v.identify();
 }

 public static void main(String[] args){
 Automobile m = new Automobile();
 Watercraft w = new Watercraft();
 Aircraft a = new Aircraft();

 NewVehicleDemo demo = new NewVehicleDemo();
 demo.identifyYourself(m);
 demo.identifyYourself(a);
 demo.identifyYourself(w);
 }
}

Automobile
Aircraft
Watercraft

Output

9

How Does NewVehicleDemo work?

l  Associating the appropriate method definition
with the method invocation is known as
binding.

l  Early binding occurs when the method
definition is associated with its invocation
when code is compiled.
l  With early binding, the method invoked is

determined by the reference variable type.

l  How can the compiler know which Vehicle's
identify method to call in identifyYourself? It
can’t!

10

Late Binding
l  The solution is to use late (dynamic) binding.
l  Late binding

l  The appropriate method definition is associated
with its invocation at run-time.

l  The method invoked is determined by the type of
object to which the variable refers, NOT by the
type of the reference variable.

l  Java uses late binding for all methods except
l  final,
l  private (which are implicitly final), and
l  static methods.

11

An Object Knows the Definitions of Its Methods

l  The type of a class variable determines which method

names can be used with the variable.

l  However, the object named by the variable determines which
definition with the same method name is used.

l  A special case of this rule:

l  The type of a class parameter determines which method names
and members the compiler recognizes for the parameter.

l  The argument determines which definition of the method name is
used.

Vehicle v = new Automobile();

FF08

v

Automobile

Object named
Vehicle type
variable

12

Using Polymorphism

l  How do we take advantage of Polymorphism?

l  Write code to talk to base class objects (e.g. use
base class references as method parameters).

l  Late binding will ensure that the appropriate method

definition is used, even if a reference to a derived
class is passed to the method.

13

More Vehicles

Vehicle

Automobile Watercraft Aircraft

Car Motorcycle Boat Jet Skit Helicopter Jet

14

Extensibility
l  Suppose more Vehicles were added to the hierarchy as shown in the

previous diagram.

l  All of these new classes work correctly with the old, unchanged identify

method of the VehicleDemo because identifyYourself()’s parameter is a
base class reference.

l  In a well designed OOP program, most of your methods will follow the

model of identifyYourself and communicate with a base class reference
and let late binding and polymorphism determine which class' identify
method to call.

l  Such a program is called extensible because you can add new

functionality by deriving new classes from the base class without changing
existing code.

15

The final Modifier
l  A method marked final indicates that it cannot be

overridden with a new definition in a derived class.

l  If final, the compiler can use early binding with the method.

public final void someMethod() { . . . }

l  A class marked final indicates that it cannot be used as

a base class from which to derive any other classes.

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

16

l  All classes created extend from Object, our classes inherit the toString
method and can be printed using
 System.out.println();

As in this code snippet
 Vehicle auto = new Automobile();
System.out.println(auto);

l  This works because of late binding.

Late Binding with toString

17

Late Binding with toString
l  One definition of the method println takes a single argument of type
Object:

public void println(Object theObject)
{
 System.out.println(theObject.toString());
}
l  In turn, It invokes the version of println that takes a String

argument.

Note that the println method was defined before the Vehicle class

existed.

l  Because of late binding, the toString method from the Vehicle class

is used, not the toString from the Object class.

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	
 	

All	
 rights	
 reserved	

18

Upcasting and Downcasting
l  Upcasting occurs when an object of a derived class is assigned to a

variable of a base class (or any ancestor class).

Or we could do something equivalent, such as

l  Because of late binding, identify() uses the definition of identify
() given in the Automobile class.

Copyright	
 ©	
 2008	
 Pearson	
 Addison-­‐Wesley.	

	
 All	
 rights	
 reserved	

Vehicle v; //
base class
Automobile auto = new Automobile(); // derived
class
v = auto; //
upcasting

v.identify(); //
prints automobile

Vehicle v = new Automobile();

19

Upcasting and Downcasting
l  Downcasting occurs when a type cast is performed from a base class to a

derived class (or from any ancestor class to any descendent class).

l  Downcasting must be done very carefully.
l  In many cases it doesn't make sense, or is illegal:

!

l  There are times when downcasting is necessary; e.g., inside the
equals method for a class.
-  How can we make sure a Vehicle is an Automobile?

void doSomething(Vehicle v1) {
 Automobile a1 = (Automobile) v1; // could generate an error
 a1 = v1; // will generate an error

}

