Java Primer ||

CMSC 202

Expressions

* An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value

* For example:

int cadence = 0;

anArray[0] = 100;

System.out.println("Element 1 at index 0: " + anArray[O0]);
int result =1 + 2;

System.out.println(x == y ? "equal" :'"not equal");

Statements

Statements are roughly equivalent to sentences
in natural languages. A statement forms a
complete unit of execution.

Two types of statements:

— Expression statements — end with a semicolon
* Assignment expressions
* Any use of ++ or --
* Method invocations
e Object creation expressions

— Control Flow statements
* Selection & repetition structures

Comment Types

End of line comment — ignores everything else on the line after the

ll//ll

// compute the volume

Multi-line comment — must open with “/*” and close with “*/”

/%
* sort the array using
*x selection sort

*/

Javadoc comment — special version of multi-line comment that
starts with “/**”

— Used by Java’s documentation tool

/*%
* Determines if the item is empty
* true if empty, false otherwise

%/

If-Then Statement

* The if-then statement is the most basic of all
the control flow statements

Python Java
if x == 2: if (x == 2)

print "x is 2" System.out.println("x is 2");
print "Finished" System.out.println("Finished") ;

Notes about Java’s if-then:
* Expression must be in parenthesis
* Expression must result in a boolean value

Multiple Statements

 What if our then case contains multiple
statements?

Python Java
if x == 2: if(x == 2)
print "even'" System.out.println("even") ;
print "prime" System.out.println("prime") ;
print "Done!" System.out.println("Done!") ;
Notes:

* Unlike Python, spacing plays no role in Java’s selection/
repetition structures

* The Java code is syntactically fine — no compiler errors

* However, it is logically incorrect

Blocks

* A block is a group of zero or more statements
that are grouped together into a group

* |n Java, blocks are denoted by opening and
closing curly braces {" and }

if(x == 2) {
System.out.println("even") ;
System.out.println("prime") ;

}
System.out.println("Done!") ;

Note:

* |t’s generally considered a good practice to include the curly
braces even for single line statements

Variable Scope

That set of code statements in which the variable is
known to the compiler

Where it can be referenced in your program

Limited to the code block in which the variable is
defined

A code block is a set of code enclosed inside of curly
braces

For example:

if (age >= 18) {
boolean adult = true;

}

/* couldn't use adult here */

If-Then-Else Statement

* The if-then-else statement looks much like it
does in Python (aside from the parenthesis
and curly braces)

Python Java
if x % 2 == 1: if(x $ 2 == 1) {

print "odd" System.out.println("odd") ;
else: } else {

print "even" System.out.println("even") ;

}

If-Then-Else If-Then-Else Statement

* Again, very similar...

Python Java
if x < y: if(x <y) {

print "x < y" System.out.println("x < y");
elif x > y: } else if (x > y) {

print "x > y" System.out.println("x > y");
else: } else {

print "x == y" System.out.println('"x == y")

}

Switch Statement

* Unlike if-then and if-then-else, the switch
statement allows for any number of possible

execution paths
 Works with byte, short, char, and int primitive

data types
— As well as enumerations (which we’ll cover later)

Switch Statement

int cardvalue = /* get value from somewhere */;
switch (cardValue) ({
case 1:
System.out.println("Ace") ;
break;
case 11:
System.out.println("Jack") ; Notes:
break:; * break statements are
case 12: typically used to terminate
System.out.println ("Queen") ; each case
break; * It’s usually a good practice
case 13: to include a default case
System.out.println("King") ;
break;
default:

System.out.println(cardvValue) ;

Switch Statement

switch (month) {

case 1l: case 3: case 5: case 7:

case 8: case 10: case 12:
System.out.println("31 days")
break;

case 4: case 6: case 9: case 11:
System.out.println("30 days") ;
break;

case 2:
System.out.println("28 or 29 days");
break;

default:
System.err.println("Invalid month!");
break;

}

Notes:
* Without a break statement, cases “fall through” to the next statement

While Loops

* The while loop executes a block of statements
while a particular condition is true

* Pretty much the same as Python...

Python Java

count = 0; int count = 0;

while (count < 10): while (count < 10) {
print count System.out.println (count) ;
count += 1 count++;

print "Done!" }

System.out.println("Done!") ;

Do-While Loops

* |[n addition to while loops, Java also provides a
do-while loop

— Expression is at the bottom of the loop

— Statements within the block are always executed
at least once

— Note the trailing semicolon!

int count = 0;

do {
System.out.println (count) ;
count++;

} while (count < 10);

System.out.println("Done!") ;

For Loop

* The for statement provides a compact way to iterate
over a range of values

for (initialization; termination; increment) {
/* ... statement(s) ... */

}

 The initialization expression initializes the loop —it’s
executed once, as the loop begins.

* When the termination expression evaluates to false,
the loop terminates

* The increment expression is invoked after each
iteration through the loop

For Loop

 The equivalent loop written as a for loop

— Counting from start value (zero) up to (excluding)
some number (10)

for count in range (0, 10):
Python print count

print "Done!"

for (int count = 0; count < 10; count++) ({
System.out.println(count) ;

Java
}

System.out.println("Done!") ;

For Loop

e Counting from 25 up to (excluding) 50 in steps
of 5

for count in range (25, 50, 5):
Python print count

print "Done!"

for(int count = 25; count < 50; count += 5) {
System.out.println (count) ;

Java
}

System.out.println("Done!") ;

For Loop

* |terating over the contents of an array

Python

Java

items = ["foo", "bar", "baz"]
for i in range(len(items)) :
print "%d: %$s" % (1, items|[i])

String[] items = new String[]{"foo","bar","baz"};
for(int 1 = 0; i < items.length; i++) {
System.out.printf("%d: %$s%n", i, items[i]) ;

}

For Each Loop

Java also has a second form of the for loop
known as a “for each” or “enhanced for” loop

This is much more like Python’s for-in loop
The general form is:

for (<type> <item name> : <collection name>) {
/* ... do something with item ... */

}

For now, we’ll assume that the collection is an
array (though there are other objects it can be
which we’ll discuss later in the semester)

For Each Loop

* |terating over the contents of an array using a
for-each loop

P thon items = ["foo", "bar", "baz"]
y' for item in items:
print item

String[] items = new String[]{"foo","bar",6"baz"};
for (String item : items) {
System.out.println (item);

Java

}

Reading From the Console

Java’s Scanner Object reads in input that the user
enters in the command line

Scanner input = new Scanner (System.in) ;

System.in is a reference to the Standard Input Buffer

We can read values from the Scanner object using the
dot notation to invoke a number of functions

— nextint() — returns the next integer from the buffer

— nextFloat() — returns the next float from the buffer

— nextLine() — returns the the entire line as a String

Scanner Notes

* |n order to use the Scanner class, you'll need
to add the following line to the top of your
code...

import java.util.Scanner;

» You should never declare more than one
Scanner object on a given input stream

* The Scanner object will wait for a user to type
and read all text entered up until the user
presses the “enter” key

Reading from the Console

System.out.print ("Enter 2 numbers to sum: ") ;
Scanner input = new Scanner (System.in);

int nl = input.nextInt();
int n2 = input.nextInt();
System.out.printf("%$d + $d = %$d", nl, n2, nl + n2);

Ill 121 181 () lll IOI (\nl

Lets assume the user has entered “128 10”

The first call to nextInt() reads the characters “128” leaving
the “ 10\n” in the buffer

The second call to nextInt() reads the “10” and leaves the “\n”
in the buffer

Reading via UNIX Redirection

o°

. cat numbers
int sum = 0;

Scanner input = new Scanner (System.in) ; 2 23
while (input.hasNextInt()) ({ 5 6 7
sum += input.nextInt() 8

}

System.out.println("Sum: " + sum);

o°

java Sum < numbers
um: 36

o N

 The Scanner class also has a bunch of hasNextX()
methods to detect if there’s another instance of the
given type in the stream

 For example, this is useful if we were reading an

unknown quantity of items from file that’s redirected
Into our program

Strings

Java’s String class represents a immutable sequence of characters

String variable = "ABC";
String name = "Bubba";

Strings can be easily concatenated together using the + operator
String player = "Donkey" + "Kong";

Strings can be concatenated with both primitive and reference
types

String foo = "abc" + 123;

Strings also support the += operator

String s = "foo";
s += "bar";

String Equality

Python Java
if player == "Mario": if (player.equals ("Mario")) {
color = "red"” color = "Red";

}

* Unlike Python, we cannot simply use the ==
operator to compare Strings

e Remember — Strings are reference types, so
comparing the variables would simply compare
the references

* Instead, we need to utilize the equals() method

Strings

* The String object stores the number of characters in
the String in the length method

Python Java

print len (name) System.out.println (name.length());

* To access an individual characters of a string, we must
use the charAt(index) method

Python Java

player = "Mario" String player = "Mario";
print "%c" % player[0] System.out.println(player.charAt(0));

Strings

* To see more String methods, consult the

javadocs...
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Overview Package Use Tree Deprecated Index Help Java™ Platform
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes Standard Ed. 6
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
javalang

.
Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:
Serializable, CharSequence, Comparable<String>

public final class String
extends Object
implements Serializable, Comparable<String>, Char:

The string class represents character strings. All string literals in Java programs, such as “abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable strings. Because String objects are immutable they can
be shared. For example:

String str = "abc";

is equivalent to:

char data[] = {'a', 'b', 'c'};
String str = new String(data);

Here are some more examples of how strings can be used:

System.out.println("abec");
String cde = "cde"

System.out.println("abc" + cde);
String ¢ “"abc".substring(2,3);
String d = cde.substring(l, 2);

The class string includes methods for examining mdmdual characters of the sequence, for comparing strings, for searching strings, for extracting substrings,
and for creating a copy of a string with all ch to or to lowercase. Case mapping is based on the Unicode Standard version specified

hythe characser cla:

Java Program Basics

package demos;

public class SimpleProgram ({
public static void main (String[] args) {
System.out.println("Hello World") ;

}
}

* All code (variables, functions, etc.) in Java exist
within a class declaration...

— Data Structures
— Driver Classes

* The package keyword defines a file/class
hierarchy used by the compiler and JVM

Java Program Review

package demos; package demos;
public class SimpleProgram { public class OtherProgram {
public static void main (String[] args) { public static void main (String[] args) {
System.out.println("Hello World") ; System.out.println("Hello World 2");

} }
} }

Java source code can be compiled under any operating system
— javac -d . SimpleProgram.java
— javac -d . OtherProgram.java
Java will create a directory named demos containing
— SimpleProgram.class
— OtherProgram.class
We can execute SimpleProgram with the following
— java demos.SimpleProgram
We can execute any classes's main in a similar manner
— java <package name>.<Class name>

Command Line Arguments

package demos;

public class ArgsDemo ({
public static void main (String[] args) {
for(int 1 = 0; i < args.length; i++) {
System.out.println (args[i]) ;
}

}

Anything that follows the name of the main class to be executed
will be read as a command line argument

All text entered will be stored in the String array specified in main
(typically args by convention)

— java demos.ArgsDemo Hi

— Results in “Hi” stored at args[0]
Individual arguments can be separated by spaces like so

— java demos.ArgsDemo foo 123 bar

— Results in “foo” stored at args[0], “123” at args[1] and “bar” at args[2]

