
Interfaces

CMSC 202

Public Interfaces

l  Objects define their interaction with the outside
world through the their public interface.

l  A class' public interface is the set of public
members that a user can access
l  Public non-static members & methods
l  Public static members & methods

Public Interface

l  An interface is a group of related methods that
multiple objects have in common, but might
function slightly different.

l  For instance all Vehicles
l  Speed up
l  Slow down
l  Turn

Java Interfaces

l  Interfaces in Java are a set of behaviors that
are common to multiple classes.

l  The implementation of an Interface is similar to
a class except that Interfaces:
l  Use the keyword interface instead of class,
l  Can only contain public methods, variables, and

constants.
l  And methods are do not contain a body.
l  All methods are implicitly abstract.

Java Interface

l  Each method defined in the interface does not
have a body.

l  Interfaces can only have initialized variables.
l  Any class that has the same methods defined in

the interface may implement Drivable.

public interface Drivable {
 void accelerate(int amount);
 void decelerate(int amount);
 void move(int time);
 void turn(int radians);
 double pi = 3.141;

}

Implementing Interfaces

l  A class that uses an interface must
l  Use the keyword implements
l  And define all methods that are part of the interface.

public class Vehicle implements Drivable{
 public void accelerate(int amount){
 // accelerate like a Vehicle
 }
 public void decelerate(int amount){
 // decelerate like a Vehicle
 }
 public void turn(int radians){
 // turn like a Vehicle
 }
 public void move(int time){
 // move like a Vehicle
 }
}

Interfaces

l  All methods are implicitly abstract.
l  A class that implements an Interface must

implement all methods defined in the interface to be
concrete.

l  A class that does not implement all methods must
be labeled as abstract when appropriate.

l  Interfaces can be used as a reference variable
type.
l  All the rules of polymorphism apply.

Drivable thing = new Vehicle();

Comparable

l  Comparable is an Interface defined in the Java
API that is used to provide an ordering of
Objects of the same type.

l  A class that implements comparable must
define the compareTo() method that when
invoked a.compareTo(b) returns

-  -1 if a < b
-  0 if a == b
-  1 if a > b

l  This is the convention for the compareTo method.

Comparable

l  Here we are alphabetically ordering Cars by their make and then their
model.

public class Car extends Vehicle implements Comparable<Car>{
 private String make, model;

 public int compareTo(Car other){
 int result = this.make.compareTo(other.make);
 if(result < 0 || result > 0){
 return result;
 }
 else{
 return model.compareTo(other.model);
 }
 }
 public static void main(String[] args){
 Comparable car1 = new Car();
 Car car2 = new Car();
 String solution = "";
 switch(car1.compareTo(car2)){
 case -1: solution = " preceeds "; break;
 case 0: solution = " same "; break;
 case 1: solution = " succeeds "; break;
 }
 System.out.println("car 1" + solution "car 2");
 }
}

Conventions

l  All interface methods must thorough javadoc
comments. These must include the intended
purpose of the method.

l  compareTo is supposed to return specific
values when invoked. This is a convention of
the interface and is enforced by the Java
compiler.
l  The following implementation is syntactically correct

but violates the intended usage.

public int compareTo(Car other){
 return 0;
}

Design By Contract

l  Design by Contract is a metaphor on how
elements of a software collaborate with each
other, on the basis of mutual obligations and
benefits.
l  The supplier must provide a certain product (obligation) and is entitled to

expect that the client has paid its fee (benefit).

l  The client must pay the fee (obligation) and is entitled to get the product
(benefit).

l  Both parties must satisfy certain obligations, such as laws and
regulations, applying to all contracts.

Design by Contract

l  Part of design by contract is defined in the pre
and post conditions defined by the supplier.
l  Preconditions – remove error checking that a user

has to implement
l  Postconditions – state what is true open exit of the

function guiding a user in the implementation

l  The Contract is a formalization of obligations
and benefits.
l  What does it expect?
l  What does it guarantee?
l  What does it maintain?

Interface Hierarchy

l  Interfaces can be used as the base “class” of
other interfaces
l  You can derive an interface from another interface

using the keyword extends
l  A derived interface inherits all the methods of the

base interface.
l  To implement a derived interface, all methods must

be implemented by the class.

l  Since interfaces can be used as reference
variables they can add to class hierarchies

Class Hierarchy

Drivable

Vehicle

Automobile Aircraft

Car Plane Motorcycle

Horse

Helicopter

Interfaces and Polymorphism
l  We can use interfaces to increase the extensibility of our code.

l  We can write functions that require object to implement an interface
instead of being a class.

public static void selectionSort(Comparable<T>[] items){
 int minPos;
 int minItem;

 for(minPos = 0; minPos < items.length; minPos++){
 minItem = minPos;
 for(int i = minPos + 1; i < items.length; i++){
 if(items[i].compareTo(items[minItem]) < 0){
 // found a new minimum
 minItem = i;
 }
 }
 if(minItem != minPos){
 Comparable tmp = items[minItem];
 items[minItem] = items[minPos];
 items[minPos] = tmp;
 }
 }
}

Multiple Inheritance

l  Java does not support multiple inheritance with
classes.
l  You can not say Class X extends X, Y

l  However, Java does allow a class to implement
multiple interfaces.

public class Liger implements Tiger, Lion

Multiple Interfaces

l  The class Liger must implement all methods in
both Lion and Tiger.

l  Liger can now be referenced by either Lion or
Tiger but is limited to the interface defined in
Lion or Tiger respectively.

Lion Tiger

Liger

Multiple Interfaces

l  No Java syntax errors will occur for methods
that “overlap” from Lion and Tiger.
l  But in languages like C++ many problems arise

from a “Diamond of Death”

public interface Lion{
 public void eat();
}

public interface Tiger{
 public void eat();
}

public class Liger implements Lion, Tiger{
 public void eat() {

 // should I eat like a lion or tiger?
 }
}

