Interfaces

CMSC 202

Public Interfaces

« Objects define their interaction with the outside
world through the their public interface.

« A class' public interface is the set of public
members that a user can access

« Public non-static members & methods
« Public static members & methods

Public Interface

« An interface is a group of related methods that
multiple objects have in common, but might
function slightly different.

o For instance all Vehicles

« Speed up
o Slow down
e fUrN

Java Interfaces

o Interfaces in Java are a set of behaviors that
are common to multiple classes.

« The implementation of an Interface is similar to
a class except that Interfaces:
. Use the keyword interface instead of class,

« Can only contain public methods, variables, and
constants.

« And methods are do not contain a body.
« All methods are implicitly abstract.

Java Interface

public interface Drivable {
void accelerate (int amount) ;
void decelerate (int amount) ;
void move (int time) ;
void turn(int radians);
double pi1 = 3.141;

}

« Each method defined in the interface does not
have a body.

« Interfaces can only have initialized variables.

« Any class that has the same methods defined Iin
the interface may implement Drivable.

Implementing Interfaces

public class Vehicle implements Drivable(

public void accelerate (int amount) {
// accelerate like a Vehicle

}

public void decelerate (int amount) {
// decelerate like a Vehicle

}

public void turn (int radians) {
// turn like a Vehicle

}

public void move (int time) {
// move like a Vehicle

}
}

« A class that uses an interface must

« Use the keyword implements
« And define all methods that are part of the interface.

Interfaces

« All methods are implicitly abstract.

« A class that implements an Interface must
implement all methods defined in the interface to be
concrete.

« A class that does not implement all methods must
be labeled as abstract when appropriate.

o Interfaces can be used as a reference variable
type.
o All the rules of polymorphism apply.

Drivable thing = new Vehicle()

Comparable

« Comparable is an Interface defined in the Java
API that is used to provide an ordering of
Objects of the same type.

« A class that implements comparable must
define the compareTo() method that when
invoked a.compareTo(b) returns

- -1Tifa<b
- 0ifa==b
- 1Tifa>Db
« This is the convention for the compareTo method.

Comparable

public class Car extends Vehicle implements Comparable<Car>{
private String make, model;

public int compareTo (Car other) {
int result = this.make.compareTo (other.make);
if (result < 0 || result > 0){
return result;
}
else{
return model.compareTo (other.model) ;
}
}
public static void main(String[] args) {
Comparable carl = new Car();
Car carZ2 = new Car();
String solution = "";
switch (carl.compareTo (car?)) {

case -1: solution = " preceeds "; break;
case (0: solution = " same "; break;
case 1: solution = " succeeds "; break;

}

System.out.println("car 1" + solution "car 2");

. Here we are alphabetically ordering Cars by their make and then their
model.

Conventions

 All interface methods must thorough javadoc
comments. These must include the intended

purpose of the method.

« compareTo Is supposed to return specific
values when invoked. This is a convention of
the interface and is enforced by the Java

compiler.

« The following implementation is syntactically correct
but violates the intended usage.

public int compareTo (Car other) {
return O;

}

Design By Contract

« Design by Contract is a metaphor on how
elements of a software collaborate with each
other, on the basis of mutual obligations and
benefits.

. The supplier must provide a certain product (obligation) and is entitled to
expect that the client has paid its fee (benefit).

« The client must pay the fee (obligation) and is entitled to get the product
(benefit).

. Both parties must satisfy certain obligations, such as laws and
regulations, applying to all contracts.

Design by Contract

» Part of design by contract is defined in the pre
and post conditions defined by the supplier.

« Preconditions — remove error checking that a user
has to implement

« Postconditions — state what is true open exit of the
function guiding a user in the implementation

. The Contract is a formalization of obligations
and benefits.

« What does it expect?
« What does it guarantee?

 What does it maintain?

Interface Hierarchy

o Interfaces can be used as the base “class” of
other interfaces

« You can derive an interface from another interface
using the keyword extends

« A derived interface inherits all the methods of the
base interface.

« To implement a derived interface, all methods must
be implemented by the class.

o Since interfaces can be used as reference
variables they can add to class hierarchies

Class Hierarchy

<Automobile> < Aircraft >

T S

Car Motorcycle Plane Helicopter

Interfaces and Polymorphism

« We can use interfaces to increase the extensibility of our code.

. We can write functions that require object to implement an interface
instead of being a class.

public static void selectionSort (Comparable<T>[] items) {
int minPos;
int minItem;

for (minPos = 0; minPos < items.length; minPos++) {
minItem = minPos;
for(int 1 = minPos + 1; 1 < items.length; 1i++) {
if (items[i].compareTo (items[minlItem]) < 0) {
// found a new minimum
minItem = 1i;
}
}
i1f (minItem != minPos) {
Comparable tmp = items[minlItem];
items[minItem] = items[minPos];

items[minPos] = tmp;

Multiple Inheritance

« Java does not support multiple inheritance with
classes.

« You can not say Class X extends X, Y

« However, Java does allow a class to implement
multiple interfaces.

public class Liger implements Tiger, Lion

Multiple Interfaces

Liger

« The class Liger must implement all methods in
both Lion and Tiger.

 Liger can now be referenced by either Lion or
Tiger but is limited to the interface defined in
Lion or Tiger respectively.

Multiple Interfaces

public interface Lion{ public interface Tiger/{
public void eat(); public void eat () ;

} }

public class Liger implements Lion, Tiger{
public void eat () {
// should I eat like a lion or tiger?

}
}

« No Java syntax errors will occur for methods
that “overlap” from Lion and Tiger.

« But in languages like C++ many problems arise
from a "Diamond of Death”

