
Object Oriented Programming 
Design Basics 

CMSC 202 



Topics 

•  Static Methods and Members 
o  Appropriate Uses 
o  Eclipse Debugging 

•  Encapsulation 
o  Misuse of Accessors and Mutators 
o  Immutable Objects and Constructors 

•  Composition 
o  Fluent Interfaces 
o  Method Chaining 
o  Coupling 
o  Delegation 



Static Variables 

•  Remember, Static variables belong to the class. 
o  All instances of the class have the static variable 

as their own. 
o  However, all instances share the same static 

variable. 
– Can we use static variables to ensure all 

instance of a class will have the same 
attribute value? 

 
– Can we use static variables to represent 

general/universal attributes (i.e. Every person 
has 10 toes, 10 fingers,...) 



Number of Toes 

•  Declaring numToes to be a static 
variable 

–  What happens when peg, lilly, 
or ted were to lose a toe?  
Everyone loses a toe. 

 
•  Generally: 

–   Attributes are local to an 
instance, even when they 
appear to be true about an 
entire set of instance. 

–  Static variables are commonly 
used to count instances of a 
class and control the state of all 
instances. 

 

public class Person { 
   private static int numToes; 
 
   public Person(){ 
      numToes = 10; 
   } 
 
   public loseToe(){ 
      numToes--; 
   } 
 
   public static void main(String[] args){ 
      Person ted = new Person(); 
      Person lilly = new Person(); 
      Person peg = new Person(); 
      peg.loseToe();  
   } 
} 

Is it the case that every person has  
10 TOES? 



Static Constants 

•  Magic Numbers 
–  "are a special constant used for some specific purpose",   
–  whose value or presence is inexplicable without some additional 

knowledge of the implementation, 
–  and commonly mislabeled public.  

•  Implementation details should be hidden from a class' users. 

// magic numbers as array indexes 
grades[0] = 5; // number of A in the class 
grades[1] = 2; // number of C in the class 
 
grades[A] = 5; 
grades[B] = 2; 

private int[] grades = new int[5]; 
private static final int A = 0; 
private static final int B = 1; 



Static Methods 

•  Static methods: 
–  are members of all instances of the class, 
–  are mostly used as utility functions, 
–  do not require a calling object, 
–  can only use/call other static members/methods, 
–  are most commonly debugged incorrectly. 



Mistaken Static Methods 

Eclipse suggests a solution 
to change the modifier to 

 'static' 

Changing the method 
to static will not 

still not solve the problem. 
Eclipse will then suggest 

variable be changed to static. 
Why is this the case? 



Encapsulation 

•  We defined Encapsulation as a means to hide the 
implementation details of a class from the class user. 

• Visibility modifiers allow class creators to hide variables 
and functions.  

•  We often add accessors/mutators to classes providing users 
a means to access/modify the state of an object. 

• We even go on to say that this is still encapsulation, 
because we decide what services are provided and how 
they must be used. 

• Why not show it all? 



Procedural or OO? 
public class Car { 
   // other instance variables... 
   private int longitude = 0; 
   private int latitude = 0; 
 
   public int getLongitude(){ return longitude; } 
   public int getLatitude(){ return latitude; } 
   public void setLongitude(int long) { longitude = long; } 
   public void setLatitude(int lat){ latitude = lat; } 
 
   public static void main(String[] args){ 
      Car car = new Car("ABC123",1967,"Ford", "Mustang"); 
      // set initial location 
      car.setLatitude(39); 
      car.setLongitude(-76); 
      System.out.println("Latitude: " + car.getLatitude() + 
                         " Longitude: " + car.getLongitude()); 
      // drive to CCBC 
      car.setLatitude(39); 
      car.setLatitude(-75); 
      System.out.println("Latitude: " + car.getLatitude() +  
                         " Longitude: " + car.getLongitude()); 
   } 
} 

  



Encapsulation Problems  

•  When new OO programmers create an initial class, many times the class' 
interface is completely overlooked. 
–  “I need to get this thing to work!” 

•  We have all said this at some point, leading to poorly written OO code. 
–  Let us think for a moment on how a Car actually changes its location. 

•  A car typically has to be driven to another location.  It does not 
instantaneous appear at its destination. 

•  Why did we provide a public mutator to set the Latitude/Longitude? 
–  Set the initial location of the Car?  A constructor provides this 

functionality. 
–  A public method drive(new latitude, new longitude) would suffice 

instead of providing two mutators. 
 

 



The Public Interface 

•  A class' public interface is the set of all public methods and variables. 
–  Let us look at two implementations of a similar behavior. 

private boolean doorLock = false;  
 
public void lockDoors() { doorLock = true; } 
public void unlockDoors() { doorLock = false; } 

 — or — 

private boolean doorLock = false;  
 
public void setDoorLock(boolean lock) { doorLock = lock; } 

•  The first example provides two methods to simulate two behaviors of a Car 
door locking. 

•  The second uses a traditional mutator to accomplish both. 
–  Is one better than the other? 



Encapsulation: Things to Avoid 

•  Providing total access/control to all instance 
variables 
– Provide a well documented interface that allows users 

to modify the state indirectly (i.e. through class 
services) 

•  Provide constructors that all a user to initially set the state 
 
•  Provide users accessors to a few variables they may require 
•  Provide users services that act as mutators 

public void moveCar(int latitude, int longitude){ ... } 

public Car(String vin, ..., int latitude, int longitude){ ... } 



Mutate or Garbage? 

•  Immutable Objects are objects whose state cannot change after it is 
constructed. 

•  How can we mutate an Immutable Object? 
–  Create a new one. 
–  The impact of object creation is often overestimated, and can be offset by 

some of the efficiencies associated with immutable objects. These include 
decreased overhead due to garbage collection, and the elimination of code 
needed to protect mutable objects from corruption. 

•  Again, not every class needs mutators to modify the state of an object. 
–  It is our job to limit any class' public interface to the necessary variables 

and methods.   



Fluent Interfaces 

•  A Fluent Interface is a way of implementing an 
OO API in a way that is more readable and 
reusable. 
–  It is implemented by using method chaining to relay 

the instruction context of a subsequent call. 
– A phrase coined by Eric Evans and Martin Fowler 

 



Method Chaining 

•  Method Chaining is when you invoke a method 
of a class and then invoke another method on the 
returned object and so on... 

object.doSomething().doSomethingElse().doAnotherThing(); 

•  This provides a more fluid feel while coding. 
– Suppose we want to get the first 3 characters of a 

Car's vin. 
defaultCar.getVin().substring(0,3); 

There are a few things you should know... 



Coupling 

•  Coupling is the degree to which software modules rely upon one 
another. 
–  If module A is coupled to module B, module A has a 
dependency on module B. 

–  For example, class A is defined as such... 
•  A is coupled to B, 
•  A depends on B, 
•  and B changes, A may need to change. 

public class A { 
    private B b; 
    ... 
} 

Class 
A 

Class 
B 



More Coupling 

•  Coupling strength is based on the 
– Quantity of module coupling points, 
– And the complexity of the coupling points. 

A 

C 

E 

B 

D F 

A 

C 

E 

B 

D F 

A 

C 

E 

B 

D F 

Low coupling Higher coupling Very high coupling 

For each example above, what are the concerns when the module C must 
be modified or replaced? 



Version 9/10 18 

Evaluating Coupling 

public void someMethod(int flag) { 
     . . . 
 
     if (flag == 1) 
          . . . 
     else if (flag == 2) 
          . . . 
     else if (flag  == 3) 
          . . . 
     else . . . 
 
     . . . 
} 

•  This code is very strongly coupled 
to any other internal or external code 
that calls it. 

•  Yes, there is only one coupling point 
between the caller and someMethod
( ). But it is very strong (complex). 

•  The calling code must be aware of 
the meaning of all flag values. 

•  someMethod must be careful if it 
adds flag values, deletes flag values, 
or changes the meaning of any flag 
values. 

Relative to coupling, what’s a better 
way to implement this code? 

A Method 



Version 9/10 19 

More Coupling 
•  Want weak (loose) coupling  
•  Cannot have zero coupling, so our goals are to 

– minimize coupling, 
– weaken (loosen) coupling, and 
– most importantly, to control coupling. 

•  Every coupling point is intentional. 
•  Every coupling point has a well-defined interface. 

 



Version 9/10 20 

So, What’s a Module? 
•  Any “chunk” of a software system or program 

–  program 
–  function 
–  method 
–  class 
–  package 
–  cluster of functions 
–  cluster of classes 
–  other … 

•  Coupling must be controlled at every level of a software 
system or program. 



21 

Decoupling Method Chains 

UI 
(main) Course  

Section Student 

Date 

course.getSection(sectionId).getStudent(studentId).getTranscript().getGPA() 

Transcript 

Problem: Create a program to track students registered for all sections of a course. 

Suppose we want the GPA for a given student. 
From the UI class, we could: 

But… 
more coupling! 

X X 

X 

X X X 

X 
How do we remove 
the chains? 

course.getStudentGPA(studentID)  



Delegation 

•  Composition is known as classes using other classes to reuse 
code.  Effective composition relies heavily on Delegation. 

•  Where should the work be done if not here? (aka The Fluent 
Interface approach to solving any problem) 
–  OO design gurus believe that a class should do the work of its 

type. 
•  A section is made up of students, so let section delegate the 

work of finding a student's GPA to the student class. 
•  The String class handles the work of String objects.  All 

users of Strings should delegate the String work to the 
String class. 

–  Each class should delegate the work it is trying to do to the 
class that knows how to do it. 



Final Thoughts 

•  A well designed interface solves a great many 
problems. 
– A little time now saves a larger amount of time later. 

 
 


