CMSC 202

Containers

Container Definition

« A “container” is a data structure whose purpose
IS to hold objects.

* Most languages support several ways to hold
objects
— Arrays are compiler-supported containers
— Language libraries provide a set of classes

« Java supports two primary kinds of container
interfaces

— Collections contain a sequence of individual
elements

— Maps contain a group of key-value object pairs

The Collection Landscape

Display 16.1 The Collection Landscape

Collection<T>)

Set<T>) List<T>)

Implements

(AbstractCollection<T>)

swa\”a\dw\
Implements

SortedSet<T>) C AbstractSet<T>) (AbstractList<T>)

ArrayList<T> Vector<T> 6bstractSequentialList<T9

Implements

HashSet<T> LinkedList<T>

TreeSet<T>

A single line between two boxes means

Interface) . . .
the lower class or interface is derived
from (extends) the higher one.

(Abstract Class) T is a type parameter for the type of
the elements stored in the collection.

Concrete Class

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Wildcards

« Classes and interfaces in the collection
framework can have parameter type
specifications that do not fully specify the type
plugged in for the type parameter

— Because they specify a wide range of argument
types, they are known as wildcards
public void method (String argl, ArrayList<?> arg2)

— In the above example, the first argument is of type
String, while the second argument can be an
ArrayList<T> with any base type

Wildcards

* A bound can be placed on a wildcard specifying
that the type used must be an ancestor type or
descendent type of some class or interface

— The notation <? extends String> specifies that
the argument plugged in be an object of any
descendent class of String

— The notation <? super String> specifies that the
argument plugged in be an object of any ancestor
class of String

Collection<T> Interface

« The Collection<T> interface generalizes the concept of a sequence
of elements.

« Basic Collection<T> operations include

No-argument and copy constructors

boolean contains(Object x) — returns true if at least one instance of x is
in the collection

boolean containsAll(Collection<?> targets) — returns true if all targets
are contained in the calling collection object

boolean equals(Object x) — This is equals for the collection, not the
elements in the collection. Intuitive meaning.

Object[] toArray() — returns an array containing all of the elements

boolean add(T element) — ensures that the calling collection object
contains the specified element. (optional)

boolean addAll(Collection<? extends T> collectionToAdd) — ensures
that the calling collection object contains all elements of collectionToAdd
(optional)

boolean remove(T element) — removes a single instance of the element
from the calling collection object (optional)

boolean removeAll(Collection<?> CollectionToRemove? — removes all
elements contained in collectionToRemove from the calling collection
object (optional)

void clear() — removes all elements from the calling collection object
(optional)

Collection Relationships

* There are a number of different predefined classes that
implement the Collection<T> interface

— Programmer defined classes can implement it also

* A method written to manipulate a parameter of type
Collection<T> will work for all of these classes, either
singly or intermixed

* There are two main interfaces that extend the

Collection<T> interface

— The Set<T> interface and
— The List<T> interface

Collection Relationships

* Classes that implement the List<T> interface have
their elements ordered as on a list

Elements are indexed starting with zero

A class that implements the List<T> interface allows elements
to occur more than once

The List<T> interface has more method headings than the
Collection<T> interface

Some of the methods inherited from the Collection<T>
interface have different semantics in the List<T> interface

The ArrayList<T> class implements the List<T> interface

Some methods in the List<T>
Interface

« Semantics for methods defined in Collection<T>

— equals() returns true if the calling object and
argument have the same element in the same
order

— toArray() returns the copies of the elements (not
references) in the same order

—add() places the new element at the “end” of the
list

New Methods in the List<T>
Interface (1 of 6)

Display 16.4, Methods in the List<T> Interface

public void add(int index, T newElement) (Optional)

Inserts newElement in the calling object’s list at location index. The old elements at location index
and higher are moved to higher indices.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if this add method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling

object.
Throws a NullPointerException if newElement is null and the calling object does not support

null elements.
Throws an I1legalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-10

New Methods in the List<T>
Interface (Part 2 of 6)

Jisplay 16., Methods in the List<T> Interface

public boolean addAll(int index,
Collection<? extends T> collectionToAdd) (Optional)

Inserts all of the elements in collectionToAdd to the calling object’s list starting at location index.
The old elements at location index and higher are moved to higher indices. The elements are added in
the order they are produced by an iterator for collectionToAdd.

Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index <= size()

Throws an UnsupportedOperationException if the addA11 method is not supported by the calling
object.

Throws a ClassCastException if the class of one of the elements of collectionToAdd prevents it
from being added to the calling object.

Throws a Nul1lPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.

Throws an I1legalArgumentException if some aspect of one of the elements of collectionToAdd
prevents it from being added to the calling object.

(continued)

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-11

New Methods in the List<T>
Interface (Part 3 of 6)

/ 16.1, Methods in the List<T> Interface

public T get(int index)

Returns the object at position index.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

public T set(int index, T newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position is
returned.
Throws an IndexOutOfBoundsException if the index is not in the range:

0 <= index < size()

Throws an UnsupportedOperationException if the set method is not supported by the calling object.
Throws a ClassCastException if the class of newElement prevents it from being added to the calling
object.

Throws a NullPointerException if newElement is null and the calling object does not support
null elements.

Throws an I1legalArgumentException if some aspect of newElement prevents it from being added
to the calling object.

(continued)
Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-12

New Methods in the List<T>
Interface (Part 4 of 6)

isplay 16., Methods in the List<T> Interface

public T remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to the left
(subtracts one from their indices). Returns the element that was removed from the calling object.
Throws an UnsupportedOperationException if the remove method is not supported by the calling

object.
Throws an IndexOutOfBoundsException if index does not satisfy:

0 <= index < size()

(continued)

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-13

New Methods in the List<T>
Interface (Part 5 of 6)

Display 16.4, Methods in the List<T> Interface

o

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if targetis null and the calling object does not support null ele-
ments (optional).

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

Throws a ClassCastException if the type of target is incompatible with the calling object
(optional).

Throws a NullPointerException if targetis null and the calling object does not support null ele-
ments (optional).

(continued)

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-14

New Methods in the List<T>
Interface (Part 6 of 6)

Display 16.4, Methods in the List<T> Interface

public List<T> subList(int fromIndex, int toIndex)

Returns a view of the elements at locations fromIndex to toIndex of the calling object; the object at
fromIndex is included; the object, if any, at toIndex is not included. The view uses references into the
calling object; so, changing the view can change the calling object. The returned object will be of type
List<T> but need not be of the same type as the calling object. Returns an empty List<T> if fromIn-

dex equals toIndex.
Throws an IndexOutOfBoundsException if fromIndex and toIndex do not satisfy:

0 <= fromIndex <= toIndex <= size()

(continued)

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-15

Classes that implement List<T>

* If you do not need any methods beyond those
defined in List<T>, but need a List that provides
fast random access to the elements (the get()
method), use ArrayList<T> (or the older
Vector<T>).

— But note that inserting or deleting from the middle of
the ArrayList or Vector will be slow

* If you do not need fast random access, but
require efficient sequential access through the
list, use LinkedList<T>

— Inserting or deleting from the middle of the LinkedList
is faster than with ArrayList or Vector

List<T> example code

public class ListExample {
public static void main(String[] args)
{
// Note the use of List<Integer> here
List<Integer> list = new ArraylList<Integer>();

// add elements to the end of the list
for (int k = 0; k < 10; k++)

list.add (k*2); // autoboxing
for (Integer k : list)

System.out.print(k + “, “);
System.out.println();

// remove element at index 4

list.remove(4);

for (Integer k : list)
System.out.print(k + “, “);

System.out.println();

(continued)

~

~

~

~

O O O O N

~

List<T> example code

// insert 99 at index 2

list.add(2, 99);

for (Integer k : list)
System.out.print(k + “, “);

System.out.println();

// change the wvalue at index 3 to 77

list.set (3, 77);

for (Integer k : list)
System.out.print(k + °, “);

System.out.println();

Output —---

2, 4, o, 8, 10, 12, 14, le6, 18,
2, 4, o6, 10, 12, 14, 16, 18,

2, 99, 4, o6, 10, 12, 14, 16, 18,
2, 99, 77, 6, 10, 12, 14, 16, 18,

The Collections Class

In addition to the Collection<T> interface, Java
provides the Collections class that contains
static methods to operate on or return
collections.

Some method of this class related to List are

static void reverse(List<?> list)
that reverses the contents of the specified list.

static <T extends Comparable<? super T>
void sort(List<T> list)
that sorts the specified list

static void <T>
copy (List<? super T> dest, List<? extends T> source)

coples source List to destination List

Collection Relationships

« Classes that implement the Set<T> interface do
not allow an element in the class to occur more
than once

— The Set<T> interface has the same method headings
as the Collection<T> interface, but in some cases
the semantics (intended meanings) are different

— Methods that are optional in the Collection<T>
interface are required in the Set<T> interface

Methods in the Set<T> interface

« The set<T> interface has the same method headings
as the Collection<T> interface, but in some cases the

semantics are different. For example the add methods:

public boolean add (T element) (Optional)
If element is not already in the calling object, element is added to the calling object and true is
returned. If element is in the calling object, the calling object is unchanged and false is returned.

public boolean addAll (Collection<? extends T> collectionToAdd)
(Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if
the calling object changed as a result of the call; returns false otherwise. Thus, if
collectionToAdd isa Set<T>,then the calling object is changed to the union of itself with
collectionToAdd.

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-21

Classes that implement Set<T>

 All classes that implement Set<T> disallow
duplicate elements

* If you just need a collection that does not
allow duplicates, use HashSet<T>

* |f you also need fast sorted element
access, use lreeSet<T>

More Collections Methods

Some methods of the Collections class
related to Sets include

static <T> Set<T> singleton (T obj)

that returns an immutable set containing only the
specified object

static <T> Set<T> emptySet()

that returns an (immutable) empty set

The Map Framework

« The Java map framework deals with collections of
ordered pairs
— For example, a key and an associated value

* Objects in the map framework can implement
mathematical functions and relations, so can be used to
construct database classes

« The map framework uses the Map<T> interface, the
AbstractMap<T> class, and classes derived from the
AbstractMap<T> class

The Map Landscape

Map<K,V> J
%
O?o/
Q
O’@
2
&
SortedMap<K,V> J AbstractMap<K,V>)
3
©
o
3
(0]
S5
a
TreeMap<K,V> | HashMap<K,V> |
Interface
y Assingle line between two boxes means
the lower class or interface is derived
Abstract Class from (extends) the higher one.

Kand V are type parameters for the type of

Concrete Class the keys and elements stored in the map.

Copyright © 2008 Pearson Addison-Wesley. All rights reserved 16-25

Basic Map<K, V> Interface

No-argument and copy constructors

public boolean containsValue(Object value) — returns true
If the calling map object contains at least one key that
maps to the specified value

public V get(Object key) — returns the value to which the
calling object maps the key. Returns null if the key is not in
the map.

public V put(K key, V value) — associates the key with the
value in the map. If the key is already in the map, its old
value is replaced by the value argument and returned.
Otherwise null is returned. (optional)

public void putAll(Map<? extends K, ? extends V> toAdd) —
adds all mappings from toAdd to the calling map object

public V remove(Object key) — removes the mapping for
the specified key.

Classes that implement Map<K, V>

* If you require rapid access to the value
associated with a key, use the HashMap<K, V>
class
— HashMap provides no guarantee as to the order of

elements placed in the map.

* If you require the elements to be in sorted order

oy key, then you should use the TreeMap<K,V>

* If you require the elements to be in insertion
order, use the LinkedHashMap<K,V> class

