Composition

CMSC 202



Code Reuse

» Effective software development relies on
reusing existing code

* Code reuse must be more than just copying
code and changing it which is often the case
with procedural languages like C

 The goal with OOP languages is to reuse
classes without changing the code within the
class — one OOP technique for code reuse is
known as composition




A Simple Database

* Your favorite boss wishes to implement a simple database
of Motorcycles they currently have on the dealership’s lot.
Their application has only a few requirements...

 They would like record the VIN, Color, Date of Arrival, and
Date of Sale each Motorcycle that has entered and left the
dealership. A reportis required that prints all information
for each Motorcycle. Motorcycles must be comparable to
avoid duplicate entries in the database. For ease of data
entry, it must be possible to make a copy of an existing
Motorcycle.

* Your contribution to this project is to design and
implement a class named Motorcycle that will represent a
single Motorcycle



Designing a Motorcycle Class:
Behaviors/Services

* After reading the problem description the
following behaviors/services have been identified
for the Motorcycle class

— Create a Motorcycle with a VIN, color, date of arrival,
and date of sale

— Compare two Motorcycle objects to determine if they
are identical

— Format a string containing all Motorcycle attributes

— Create a new Motorcycle which is the copy of an
existing Motorcycle



Designing a Motorcycle Class:
Instance Variables

* To support the required services, a simple Motorcycle
class could contain instance variables representing each of
the Motorcycle’s required class members

 These instance variables would all be class types: name of
type String, and two dates of type Date

* Asafirst line of defense for privacy and to provide proper
encapsulation, each of the instance variables would be
declared private

public class Motorcycle {
private String vin;
private String color;
private Date arrived; // Date stores Month (String), Day Year (ints)
private Date sold; // null means still on the lot
/] ...



Designing a Motorcycle Class:
Constraints

* |n order to exist, a Motorcycle must have (at least) a
VIN, color, and a Date of arrival

— Therefore, it would make no sense to have a no-argument
Motorcycle class constructor
* A Motorcycle that has not been sold does not yet have
a date of sale

— Therefore, the Motorcycle class constructor will need
to be able to deal with a null value for date of sale (and/or
provide a 3 argument constructor)

* A Motorcycle that has been sold must have had an
arrival date that preceded its date of sale

— Therefore, when both dates are provided to the
constructor, they will need to be checked for validity



Designing a Motorcycle Class:
The Class Invariant

* A statement that is always true for every object of the class
is called a class invariant

— A class invariant can help to define a class in a consistent and
organized way

* Forthe Motorcycle class, the following should always be
true

— An object of the class Motorcycle has a VIN, color, a date of
arrival (which are not null values), and if the object has a date

of sale, then the date of sale is equal to or later than the date of
arrival

* Checking the Motorcycle class confirms that this is true
of every object created by a constructor, and all the other
methods (e.g., the private method 1svValidState)
preserve the truth of this statement



Class Invariant Summary

* The class invariant is stated as part of the class
documentation

* Error checking in the constructor(s) and
setters/mutators insure that the class
invariant is not violated

 Methods of the class which do not change the

class’s state may assume the class invariant
holds



A Motorcycle Class Constructor

/**
* Class Invariance is that a Motorcycle must have a non-null vin, non-null

* Color, and a date of arrival that precedes its date of sale (if set).
*

* vin a non-null string to uniquely identify the Motorcycle

* color a non-null string representing the color

* arrived a non-null date of arrival

* sale a date (this may be null indicating the Motorcycle hasn't yet
* been sold)

*/

public Motorcycle (String vin, String color, Date arrived, Date sold) {
// checks the class invariant
if ('isValidState(vin, color, arrived, sold)) {
// program exits if the motorcycle would be created illegally
System.err.println("Invalid State for Motorcycle Construction") ;
System.exit (0) ;

this.vin = wvin;
this.color = color;
this.arrived = arrived;
this.sold = sold;



Checking the Class Invariant

private boolean isValidState (String vin, String color,
Date arrived, Date sold) {

return vin != null && !vin.equals("") &&
color != null && 'color.equals("") &&
arrived != null &&
(sold == null || arrived.before(sold));

* Which part of the invariance are we
validating?



Composition

* Note that the Motorcycle class contains two class type
instance variables (String and Dates)

private String vin;
private String color;
private Date arrived;
private Date sold;

 The use of classes as instance variables is a design
method known as aggregation or composition

 Composition is a fundamental way to reuse code, but
there are coding considerations when composition is
used



Composition Considerations

* With composition, Motorcycle becomes a user
of the Date and String classes

 The Motorcycle class has no special privileges
with respect to Date or String

 The Motorcycle class should delegate
responsibility to the Date and String classes
whenever possible

— We let each class, “Do the Work” of that object



Designing a Motorcycle’s Class:
The equals Method

* The definition of equals for the class
Motorcycle includes an invocation of equals
for the class String, and an invocation of the
method equals for the class Date

 The Motorcycle class passes responsibility for
determining equality to the String and Date
classes invoking their equals methods

— This is an important example of code reuse arising
from the use of composition to implement Motorcycle

* Java determines which equals method is being
invoked from the type of its calling object



Designing a Motorcycle Class:
The equals Method

These call the equals\
public boolean equals (Motorcycle other) ({ method defined in
return vin.equals (other.vin) && the String class
color.equals (other.color) && ~
arrived.equals (other.arrived) && These call the equals
sold.equals (other.sold) ; method defined in
} the Date class

Warning — Potential Statement of Mass Destruction!
Consider our Class Invariant

* The date of sale could be null
* Using the equals method could generate a null pointer exception
* Instead of storing a null value in sold...
* We could initialize it with a unique value indicating they are still on
dealership’s lot (e.g. a date way in the future), or

* We could add the code first check and see if values are null and then
handle accordingly



Designing a Motorcycle Class:
The toString Method

* TheMotorcycle class toString method includes
invocations of the Date class toString method

e Again, an example of code reuse and delegation of
responsibility due to composition

Each (non-primitive) instance
public String toString() { variable calls toString(),

String state = ""; effectively delegating the

state += "Vin: + vin + "\n"; work to that class
state += "Color: " + color + "\n";
state += "Arrived: " + arrived + "\n";

state += (sold '= null) ? "Sold: " + sold : "Not Sold" + "\n";
return state;



Designing a Motorcycle Class:
Making a Copy

 Making a copy of an object requires a special
method called a copy constructor

* A copy constructor is a constructor with a
single argument of the same type as the class

* The copy constructor should create an object
that is a separate, independent object, but
with the instance variables set so that it is an

exact copy of the argument object



Copy Constructor for a Class with
Primitive Type Instance Variables

// a class that does not use composition can
// simply copy the values of the primitive instance
// variables
public Date (Date date) {
// Not a real date object parameter
if (date == null) {
// we'll handle errors differently later
System.out.println("Fatal Error!");
System.exit (0) ;

}

// just copy the primitive variables using assignment

// month is a String which is NOT primitive, but that's ok
month = date.month;

day = date.day;

year = date.year;



Copy Constructor for a Class Using
Composition

* Because of composition, the technique used with
Date will not work correctly with Motorcycle in
its current form...

public Motorcycle (Motorcycle other) {
if (other == null) {
System.out.println("Fatal error!");
System.exit (0) ;
}

vin = other.vin; // ok
color = other.vin; // ok
arrived = other.arrived; // dangerous
sold = other.sold; // dangerous

{ This code would not create an independent }
18

copy of the original object. Why not?




Copy Constructor for a Class with
Class Type Instance Variables

The actual copy constructor for the Motorcycle class
needs to be made “safe”

Should create completely new and independent copies of
arrivedand sold, and therefore, a completely new and
independent copy of the original Motorcycle object

For example:

arrived = new Date(other.arrived) ;

Note that in order to define a correct copy constructor for
a class that uses composition, copy constructors must
already be defined for the instance variables classes (e.g.
Date)



Copy Constructor for a Class
Using Composition

public Motorcycle (Motorcycle other) {
if (other == null) {
System.out.println("Fatal error!");
System.exit (0) ;
}

vin = other.vin; // ok
color = other.vin; // ok
arrived = new Date (other.arrived); // ok
sold = new Date (other.sold) ; // ok

}
* Why do we not have to invoke a copy constructor with vin and
color?
— Strings are immutable objects
 Why is it necessary to check to see if other==null ?

— A null pointer exception will occur if other is not an instantiated
Motorcycle Object



Using and Misusing References

 When writing a program, it is very important
to insure that private instance variables
remain truly private

* For a primitive type instance variable, just
adding the private modifier to its
declaration should insure that there will be no
privacy leaks

* For a class type instance variable, adding the
private modifier alone is not sufficient



Pitfall: Privacy Leaks

* The previously illustrated examples from the
Motorcycle class show how an incorrect definition of a
copy constructor can result in a privacy leak

* A similar problem can occur with incorrectly defined
mutator or accessor methods

public Date getArrivalDate() ({
return arrived; Dangerous
}

public Date getArrivalDate() ({ <

return new Date(arrived) ;

}

22



Composition with Arrays

* Just as a class type can be used as an instance

variable, arrays can also be used as instance
variables

 We can define an array with a primitive base type

private double[] grades;
* Or, an array with a class base type

private Date[] dates;



Privacy Leaks with
Array Instance Variables

* If an accessor method is provided for the array
special care must be taken just as when an
accessor returns a reference to any private object

public double[] getGrades() {
return grades;
}

* The example above will result in a privacy leak.
e Why?



Privacy Leaks with
Array Instance Variables

 The previous accessor method would simply return a
reference to the array grades itself

* |Instead, an accessor method should return a reference
to a deep copy of the private array object

* Below, grades is an array which is an instance

variable of the class containing the getGrades
method

public double[] getGrades () {
double[] temp = new double[grades.length];
for (int i = 0; i1 < grades.length; i++) {
temp[i] = grades|[i];
}

return temp;



Privacy Leaks with
Array Instance Variables

* |f a private instance variable is an array that
has a mutable class as its base type, then
copies must be made of each class object in
the array when the array is copied

public Date[] getDates() {
Date[] temp = new Date[dates.length];
for (int 1 = 0; i1 < dates.length; i++) {
temp[i] = new Date(dates[i])

}

return temp;



But What If...

e ..the user really wants to change the array
within the class?

— The user shouldn’t know that the class uses an
array

— The array must represent some abstract data
element in the class (e.g. student grades)

— Provide a method that changes the the abstract
data element without revealing the existence of
an array



Remember...

Keep it secret,
keep it safe

~

J

28



