Classes & Objects

CMSC 202

Programming & Abstraction

* All programming languages provide some form of
abstraction

— Also called information hiding

— Separating how one uses a program and how the
program has been implemented

* Procedural Programming
— Data Abstraction — using data structures
— Control Abstraction — using functions

* Object Oriented Languages
— Data and Control Abstraction — uses classes

Procedural vs. Object Oriented

Procedural

Calculate the area of a circle
given the specified radius

Sort this class list given an
array of students

Calculate the student’s GPA
given a list of courses

Object Oriented
e Circle, what’s your radius
* (lass list, sort students

* Transcript, what’s the
student’s GPA

What is a Class?

* From the Dictionary
— A kind or category

— A set, collection, group, or configuration containing
members regarded as having certain attributes or
traits in common

* From an Object Oriented Perspective

— A group of objects with similar properties, common
behavior, common relationships with other objects,
and common semantics

— We use classes for abstraction purposes

Classes

* Classes are “blueprints” for creating a group
of objects

— Classes of birds

— Classes of cars

— Classes of shoes

* The blueprint defines
— The class’s behavior as methods

— The class’s state/attributes as variables

Class or Object?

* Variables of class types may be created just
like variables of built-in types

— Using a set of blueprints you could create a bakery

* You can create as many instances of the class
type as you like
— There is more than one bakery in Baltimore

* The challenge is to define classes and create
objects that satisfy the problem
— Do we need an Oven class?

Class Interface

 The requests you can make of an object are
determined by its interface

* Do we need to know how bagels are made in order to
buy one?

— All we actually need to know is which bakery to go to and
what action we want to perform

Bakery Class Type
Is the bakery open/closed?
Buy bread
Buy bagel Interf
Buy muffin nterface

Buy coffee

Implementation

* Code and hidden data in the class that
satisfies requests make up the class's
implementation

— What’s hidden in a bakery?

* Every request made of an object must have an
associated method that will be called

* |In OO-speak we say that you are sending a
message to the object, which responds to the
message by executing the appropriate code

Class Definitions

* We've already seen...

— How to use classes and the objects created from
them...

Scanner input = new Scanner (System.in) ;

— How to invoke their methods using the dot notation...

int num = input.nextInt()

* Let us add onto what we already know...

Class Definition

* A class definition defines the class blueprint

— The behaviors/services/actions/operations of a class
are implemented methods

* Also known as member functions
— The state of the class is stored in its members

* Also known as fields, attributes, or instance variables

* A challenging aspect of OOP is determining what
classes get modeled and at what level of detail

— This answer will vary based on the problem at hand

Objects

* Remember an object is a particular instance of an
a class

* Assuch, all objects have...

— Members
* The variable types and names (same across all instances)

 The members of each object can hold different values
(unique to that instance)

* The state of an object is defined by these values

— Methods

* The tasks that the object can perform (same across all
instances)

Anatomy of a Java Class

Access modifier
(more on this later) Keyword class Name of the class

< P)

public class Bakery

Class body: members, methods

} *+— NO semi-colon (c++)

Members

Objects store their individual states in “non-
static fields” known as members

Primitive types or reference types

Accessible by all methods of the class
— Thus the members are said to have class scope

Members are referenced using the dot
operator...

numItems = array.length;

Anatomy of Class Members

public class Bakery

{

Optional access modifier
(more on this later)

C

Member Member
type name

)

public | |booleax| closed)|;

int

numBagels

°
4

+ Remaining class body (methods)

Car Example

 What characteristics (members) are necessary
to store the state for a Car?

public class Car {

int horsepower;
int numDoors;
int year;

String vin;

String color;
String model;
String make;

/] ...

Methods

Objects are sent messages which in turn call
methods

Methods may be passed arguments and may
return something as well

Methods are available to instances of the class

Like members, methods are also referenced
using the dot operator...

System.out.println(name.charAt(0));

Anatomy of a Method

Optional access modifier return type Name of Optional
(More on this later) (may be void) mjod parameters

public int getBagelCount ()

{

Method code: local variables and statements

Car Example

* What services/behaviors might be appropriate
for a Car?

public class Car {

/] ...

void unlockDoors() { /* ... */ }

void changeColor (String color) { /* ... */ }

void changeGear (char gear) { /* ... */ }

boolean isParkingBrakeEngaged() { /* ... */ }

void engageParkingBrake() { /* ... */ }

void disengageParkingBrake() { /* ... */ }

void depressAccelerator (float percentage) { /* ... */ }
void depressBrake (float percentage) { /* ... */ }

/] ...

Creating a Car

The following defines a variable of type Car
— However there is no Car object yet!

Car myCar;

The statement myCar = new Car() creates a “new” Car
object and associates it with the variable “myCar”

— Now “myCar” refers to a Car object

myCar = new Car();

For convenience, these statements can be (and are
typically) combined

Car myCar = new Car();

Car Example

public static void main(String args[]) {
Car myCar = new Car();
myCar.vin = "123567890ABCDEF";
myCar.numLiters = 2;
myCar .horsepower = 195;
myCar.year = 2008;
myCar .changeColor ("Black") ;

System.out.println("Car is colored: " + myCar.color);
System.out.println("Car is " + (2011 - myCar.year) +
" years old");

Painting the Car

 We can change the state of any Car through services
defined in the class definition

public void changeColor (String color) {
color = color;

} Which color are we referring to?

 The compiler assumes that all uses of color refer to the
method parameter and hence this code has no effect

// change car color
myCar .changeColor ("Blue") ;
System.out.println (myCar.color);

The Calling Object

Within a method, a variable is reconciled in a specific order
1. The parameter list is checked for a variable with that name
2. The class’s members are checked to see if there’s a match

What we’re really looking for is something to refer to the
calling object...

public void setColor (String color) {
"calling object".color = color;

}
In Java, the reserved word this represents the calling object

— It is sometimes necessary to identify the calling object
— Itis also a matter of style

public void setColor (String color) {
this.color = color;

}

Printing an Object
* If you print you class by passing it to System.out.printin(),

you’ll get some cryptic looking output like so...

Car@54£c9944

* The print methods will utilize a method called toString() to
format the output if you’ve implemented it

* |t's usually a good idea to implement this method so you
can easily see the state of your objects

public String toString() {

String state = "";

state += "make: " + make;
state += " model: " + model;
// ...

return state;

Object Equality

* Reference type variables cannot be tested for
equality using the == operator

* Testing 2 reference types for equality will
resulting in comparing the underlying addresses

public static void main (String[] args) { FFOO
Car carl = new Car();
Car car2 = new Car(); Car car1
// customize both cars
if (carl == car2) { FE20
System.out.println("Same Car");
} else{ Car car2

System.out.println("Different Cars");

}

.equals()

* To actually compare the state of two objects we
must implement a .equals() method

public boolean equals (Car otherCar) {
if (horsepower != otherCar.horsepower) {

return false;
}
if (!make.equals (otherCar.make)) {
return false;
}
// ... compare necessary members ...
// otherwise, if all equal return true

return true;

Notes:

* Returns a boolean

e Compares only Cars as implemented

* Definition of what constitutes “equals” may vary class to class

Class & Method Documentation

e Class & method level documentation is intended for
the consumer of the class — it serves to help the user...

— Determine if the class is useful/applicable to their problem
— Find the appropriate method(s) and use them correctly
* Class comments

— High level documentation as to what the class represents
and does

e Method comments — important to explain...
— What the method does

— What the method takes as arguments
— What it returns

Pre-conditions & Post-conditions

Pre and Post-conditions are important to document
in the method comments

* Pre-conditions

— All assumptions made about functional parameters
and the state of the calling object

— For example: the parameter mileage is expected to be
non-negative
* Post-conditions
— All assumptions a user can make after the execution

— For example: upon successful completion the car will
have a new paint color

Javadocs

Java provides APl documentation (known as
javadocs) for the built-in class library

The documentation for each class contains
this class and method level documentation

Found online (e.g. String, Math, Scanner)

These docs are created using the javadoc tool
* Required for CMSC 202 Project Documentation
* Demonstrated in Lab 01

Javadoc Format

* Free-form text to describe method

e @param tag to identity and describe parameters
— You should have a @param tag for each argument

e @return tag to detail what’s returned when called

/**

* <description of what the method does>
*

* argl <description of argl>

* arg2 <description of arg2>

* <description of what's returned>
*/

<return type> methodName (<type 1> argl, <type 2> arg2) {
// method body

}

Example Javadoc

/**

* Changes the color of the calling object's color wvariable
*

* color a color that is real to change the car's color to
* the old color of the car
*/

public String changeColor (String color) {
String old = this.color;
this.color = color;
return old;

Method Detail

changeColor
public java.lang.String changeColor(java.lang.String color)

Changes the color of the calling object's color variable

Parameters:

color - a color that is real to change the car's color to
Returns:

the old color of the car

