
3/5/2014

1

Operator Overloading

CMSC 202

Let’s Take a Closer Look…

// In Employee.h

class Employee

{

public:

void SetManager(const Manager& boss);

private:

Manager m_boss;

};

// In Employee.cpp

void Employee::SetManager(const Manager& boss)

{

m_boss = boss;

}

// In main…

Employee me;

Manager boss;

me.SetManager(boss);

Does this work?

If so, how???

Assignment Operator

• Compiler creates a default assignment
operator

– Copies data member values

Manager a

Name = “Bob”

Manager b

Name = “”

Manager a(“Bob”);

Manager b;

b = a;

Manager b

Name = “Bob”

Not the same Manager!

Just have same data!

Copy
data

3/5/2014

2

Other Operators?

• Does this work with other operators?

Money a(2, 50); // 2.50

Money b(3, 20); // 3.20

Money c;

c = a + b;

• Unfortunately, no…

– But…we can define it ourselves!

Review: Function Overloading
void swap (int& a, int& b);

void swap (double& a, double& b);

void swap (Bob& a, Bob& b);

• Same (or similar) functionality for different types…
• Function signatures include

– Function name
– Parameter list (both number and types)

• Sidenote
– C++ compiler has a built-in function called “swap”

Closer Look at Operators…
• We could do…

Money a(2, 50); // 2.50

Money b(3, 20); // 3.20

Money c;

c = Add(a, b); // we write…

• Or…we can use
– Operator Overloading and do this:

c = a + b; // we write…

3/5/2014

3

Operator Overloading

• Define a function that overloads an operator
to work for a new type

• Example:

const Money operator+ (const Money& a, const Money& b)

{

return Money(a.GetDollars() + b.GetDollars(),

a.GetCents() + b.GetCents());

}

Function Name…essentially

What’s going on
here?

How could this
function be
improved?

Operator Overloading
• Can also be overloaded as member functions

– First object in statement becomes the “calling” object
• a + b

is equivalent to
a.operator+(b)

• Example:

const Money Money::operator+ (const Money& b) const

{

return Money(m_dollars + b.m_dollars,

m_cents + b.m_cents);

}

Notice:
implicit object!

Why const?

One parameter!

Return by const value?
const Money operator+ (const Money& a, const Money& b);

const Money operator+ (const Money& b) const;

• Why return by const value?
– Imagine this

• Money a(4, 50);

• Money b(3, 25);

• Money c(2, 10);

• (a + b) = c;

Evaluates to an unnamed
object if we don’t return by

const!

Why is this an issue?

Think about:

Money d;

d = (a + b) = c;

What is this supposed to
mean? (d gets c’s value)

Return by const value
prevents us from altering the
returned value…

3/5/2014

4

Why not return by const-ref?
const Money operator+ (const Money& a, const Money& b)

{

return Money(a.GetDollars() + b.GetDollars(),

a.GetCents() + b.GetCents());

}

• Look closely…
– We return a copy of a temporary Money object…

– It goes out of scope when the function returns!

Operator Overloading

• What about the following:

Money a(3, 25);

Money d = a + 10;

• What does the compiler do?
– Looks for a constructor for Money

that takes 1 int parameter
– Uses that constructor to build a new

Money object
– Calls the ‘+’ operator

function/method

• What about the following:

Money a(3, 25);

Money d = 10 + a;

class Money

{

public:

Money(int dollars, int cents);

Money(int dollars);

// more methods

private:

int m_dollars;

int m_cents;

};

Tries to find an
int constructor that

accepts a Money

parameter…uh oh!

Other Operators?
• You can overload just about anything, but you should be VERY careful…

– []
– * multiplication, pointer dereference
– / division
– + addition, unary positive
– - substraction, unary negative
– ++ increment, pre and post
– -- decrement, pre and post
– = assignment
– <=, >=, <, >, ==, != comparisons
– …
– Many, many others…

3/5/2014

5

Practice

• Let’s overload the
multiplication on money…
– Ignore “roll-over”
– Member function?
– Non-member function?

// In Money.h

class Money

{

public:

Money(int dollars, int cents);

int GetDollars();

int GetCents();

void SetDollars(int dollars);

void SetCents(int cents);

private:

int m_dollars;

int m_cents;

};

// In main…

Money m(100, 00);

m = m * 10;

Challenge

• Fix the multiplication operator so that it
correctly accounts for rollover.

Challenge II
• Overload the + operator to add a Passenger to a Car:

class Car

{

public:

// some methods

private:

vector<Passenger> passengers;

};

Why is overloading the + operator this way not such a
good idea?

3/5/2014

6

Recall Private/Public

• Public

– Any method or function from anywhere can
access these

• Private

– Only class-methods can access these

• Is there a way to get around this?

– Yes!

Friends

• Have access to an object’s private methods
and data

• Syntax:

friend retType methodName(params);

retType methodName(params)

{ /* code */ }

In class
declaration!

In class
implementation!

Friend vs. Non-friend
• Friend

friend const Money operator+ (const Money& a,
const Money& b); // in class

const Money operator+ (const Money& a,
const Money& b)

{

return Money(a.dollars + b.dollars,

a.cents + b.cents);

}

• Non-friend
const Money operator+ (const Money& a,

const Money& b); // NOT in class

const Money operator+ (const Money& a,
const Money& b)

{

return Money(a.GetDollars() + b.GetDollars(),

a.GetCents() + b.GetCents());

}

Why would you want this?

3/5/2014

7

Input/Output
• Overload the insertion << and extraction >> operators

– Cannot be member functions (why?)
– Can be friends

• Because…
Money m;

cin >> m;

cout << “My money: “ << m << endl;

• Is better than…
Money m;

m.Input();

cout << “My money: “;

m.Output();

cout << endl;

Output – Insertion Operator <<

• Non-friend
ostream& operator<<(ostream& sout,

const Money& money); // NOT in class

ostream& operator<<(ostream& sout,

const Money& money)

{

sout << “$” << money.GetDollars()

<< “.” << money.GetCents();

return sout;

}

• Friend (don’t forget to add friend to the prototype!)
friend ostream& operator<<(ostream& sout,

const Money& money); // in class

ostream& operator<<(ostream& sout,

const Money& money)

{

sout << “$” << money.dollars

<< “.” << money.cents;

return sout;

}

Operator<< Notes…

• You should override << for all of your classes

• Do not include a closing endl

– (after all data…why?)

• Operator<< is not a member function

• Always return ostream&

– Why?

3/5/2014

8

Input – Extraction Operator >>
// Input money as X.XX

// friend version…

istream& operator>>(istream& sin,

Money& money)

{
char dot;

sin >> money.dollars >> dot
>> money.cents;

return sin;

}

How would you do this
as a non-friend

function?

Unary Operators
• Can we overload unary operators?

– Negation, Increment, Decrement?
• YES!

• Let’s look at two cases
– Negation
– Increment

• Pre and Post

• Example
– Money m1(3, 25);
– Money m2;
– m2 = - m1;
– ++m2;
– m1 = m2++;

Negation (member function)
const Money operator- () const;

const Money Money::operator- () const

{

Money result;

result.m_dollars = -m_dollars;

result.m_cents = -m_cents;

return result;

}

3/5/2014

9

Pre Increment
Money Money::operator++(void)

{

// increment the cents

++m_cents;

// adjust the dollars if necessary

// return new Money object

return Money(m_dollars, m_cents);

}

Post Increment
Money Money::operator++(int dummy)

{

// make a copy of this Money object

// before incrementing the cents

Money result(m_dollars, m_cents);

// now increment the cents

++m_cents;

// code here to adjust the dollars

// return the Money as it was before

// the increment

return result;

}

Restrictions

• Can’t overload every operator

• Can’t make up operators

• Can’t overload for primitive types

– Like operator<< for integers…

• Can’t change precedence

• Can’t change associativity

– Like making (-m) be (m-)

3/5/2014

10

Good Programming Practices
• Overload to mimic primitives

• Binary operators should
– Return const objects by value

– Be written as non-member functions

– Be written as non-friend functions

• Overload unary as member functions

• Always overload <<
– As non-friend if possible

• Overload operator= if using dynamic memory

Practice

• Let’s overload the operator== for the Money
class

– Should it be a member function?

– Should it be a friend?

– What should it return?

– What parameters should it have?

– What do we need to do inside?

Challenge

• Overload the operator+= for a Money object

– Should it be a member function?

– Should it be a friend?

– What should it return?

– What parameters should it have?

– What do we need to do inside?

