
CMSC 202H 

Threads 



Fall 2011 2 

Principle of Multitasking: 

Processes and Threads 
 Core concept: user wants to have multiple, 

simultaneous flows-of-control in their 
computation: “do several things at once” 
 If they are independent applications, we call the units 

“processes” 

 If they are parallel execution streams within a shared 
application context, they are called “threads” 
(sometimes referred to as “lightweight processes”) 

 Originally, concurrency of these execution flows was 
simulated: “context-switched” 

 Modern systems actually support true parallelism in 
hardware (e.g.: “dual-core processors”) 



Fall 2011 3 

Why Threads are Useful 

There are several situations in which multi-threading is 
a useful model: 

 User prefers to launch multiple tasks simultaneously 
at outset, instead of sequentially with waits 

…or: 

 Some tasks “block” (like I/O)—would like to continue 
other, independent computations in the meantime 

…or: 

 Parallel, coordinated tasks is a more intuitive model 
to implement 

…or… 



Threads: Simple vs. Complex 

 In simplest form, threads are easy: 

 Start multiple, independent tasks, then wait for all 

to finish 

 Trying to coordinate tasks quickly makes 

things very complex: 

 Need communication/coordination constructs 

 Need to control concurrent access to shared 

resources 

Most of these issues exist even if multitasking is 

only simulated! 

Fall 2011 4 



Example Complication: 

 Race Conditions 
Thread 1: 

// x == 1 at start 

y = x + 1; 

x = y; 

 

Thread 2: 

 

y = x + 1; 

x = y; 

 

 

// What are results? 

Fall 2011 5 



Example Complication: 

 Race Conditions 
Thread 1: 

// x == 1 at start 

y = x + 1; 

x = y; 

 

Thread 2: 

 

 

 

y = x + 1; 

x = y; 

// x == 3 now 

Fall 2011 6 



Example Complication: 

 Race Conditions 
Thread 1: 

// x == 1 at start 

y = x + 1; 

 

x = y; 

 

Thread 2: 

 

 

y = x + 1; 

 

x = y; 

// But x == 2 now! 

Fall 2011 7 



Example Thread Application: GUIs 

 Need widgets to be independently responsive 

even though your application’s flow-of-control 

continues 

 You might want to be responsive to widget 

events even through a long computation 

 By default, Swing event handling is single-

stream, but you might want it to be parallel-

processing 

Fall 2011 8 



Java is Inherently Threaded 

 Even for a simple application with one class 

and a simple main(), using threads: 

 main() is invoked from a foreground—or user—

thread 

 Garbage collection is implemented as a 

background—or “daemon”—thread 

(Bonus question: do you know what the difference between 

a “daemon” and “demon” is?) 

Fall 2011 9 



Creating Your Own Threads— 

Method A 
 A simple way to create a thread is: 

1. Create an instance of a Runnable type object 

 Runnable is an interface, with one method: 

public void run(); 

2. Instantiate a Thread class, passing your 

Runnable instance to the constructor 

3. Invoke the new Thread instance’s start() 

method, which will do some setup, then invoke 
your Runnable’s run() method 

Fall 2011 10 



Creating Your Own Threads— 

Method A 
 public class MyRunnable implements Runnable { 

  public void run() { 

    for (int i = 0; i < 1000000; i++) { 

      long j = i * i; 

    } 

    System.out.println(“Done with thread!"); 

  } 

 

  public static void main(String args[]) { 

    Runnable task = new MyRunnable(); 

    Thread otherThread = new Thread(task); 

    otherThread.start(); 

    // Following will likely be output before above 

    System.out.println(“Main thread here”); 

  } 

} 

Fall 2011 11 



Creating Your Own Threads— 

Method B 
 The other way to create a thread is: 

1. Extend the Thread class, overriding the run() 

method (let’s call the new class MyThread) 

2. Instantiate your new Mythread class, calling 

the no-arg constructor 

3. Invoke the new MyThread instance’s start() 

method, which will do some setup, then invoke 
its overriding run() method 

Fall 2011 12 



Creating Your Own Threads— 

Method B 
 public class MyThread extends Thread { 

  public void run() { 

    for (int i = 0; i < 1000000; i++) { 

      long j = i * i; 

    } 

    System.out.println(“Done with thread!"); 

  } 

 

  public static void main(String args[]) { 

    Thread otherThread = new MyThread(); 

    otherThread.start(); 

    // Following will likely be output before above 

    System.out.println(“Main thread here”); 

  } 

} 

Fall 2011 13 



Threads: Advanced Topics 

There are many additional facets to threaded 

programming, which we cannot cover here: 

 Scheduling: 

 Pre-emptive scheduling, priorities 

 Memory: 

 Race conditions, and thread-safe code 

 Synchronization: 

 Locks, deadlocks 

Fall 2011 14 


