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Principle of Multitasking: 

Processes and Threads 
 Core concept: user wants to have multiple, 

simultaneous flows-of-control in their 
computation: “do several things at once” 
 If they are independent applications, we call the units 

“processes” 

 If they are parallel execution streams within a shared 
application context, they are called “threads” 
(sometimes referred to as “lightweight processes”) 

 Originally, concurrency of these execution flows was 
simulated: “context-switched” 

 Modern systems actually support true parallelism in 
hardware (e.g.: “dual-core processors”) 
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Why Threads are Useful 

There are several situations in which multi-threading is 
a useful model: 

 User prefers to launch multiple tasks simultaneously 
at outset, instead of sequentially with waits 

…or: 

 Some tasks “block” (like I/O)—would like to continue 
other, independent computations in the meantime 

…or: 

 Parallel, coordinated tasks is a more intuitive model 
to implement 

…or… 



Threads: Simple vs. Complex 

 In simplest form, threads are easy: 

 Start multiple, independent tasks, then wait for all 

to finish 

 Trying to coordinate tasks quickly makes 

things very complex: 

 Need communication/coordination constructs 

 Need to control concurrent access to shared 

resources 

Most of these issues exist even if multitasking is 

only simulated! 
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Example Complication: 

 Race Conditions 
Thread 1: 

// x == 1 at start 

y = x + 1; 

x = y; 

 

Thread 2: 

 

y = x + 1; 

x = y; 

 

 

// What are results? 
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Example Complication: 

 Race Conditions 
Thread 1: 

// x == 1 at start 

y = x + 1; 

x = y; 

 

Thread 2: 

 

 

 

y = x + 1; 

x = y; 

// x == 3 now 
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Example Complication: 

 Race Conditions 
Thread 1: 

// x == 1 at start 

y = x + 1; 

 

x = y; 

 

Thread 2: 

 

 

y = x + 1; 

 

x = y; 

// But x == 2 now! 
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Example Thread Application: GUIs 

 Need widgets to be independently responsive 

even though your application’s flow-of-control 

continues 

 You might want to be responsive to widget 

events even through a long computation 

 By default, Swing event handling is single-

stream, but you might want it to be parallel-

processing 
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Java is Inherently Threaded 

 Even for a simple application with one class 

and a simple main(), using threads: 

 main() is invoked from a foreground—or user—

thread 

 Garbage collection is implemented as a 

background—or “daemon”—thread 

(Bonus question: do you know what the difference between 

a “daemon” and “demon” is?) 
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Creating Your Own Threads— 

Method A 
 A simple way to create a thread is: 

1. Create an instance of a Runnable type object 

 Runnable is an interface, with one method: 

public void run(); 

2. Instantiate a Thread class, passing your 

Runnable instance to the constructor 

3. Invoke the new Thread instance’s start() 

method, which will do some setup, then invoke 
your Runnable’s run() method 
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Creating Your Own Threads— 

Method A 
 public class MyRunnable implements Runnable { 

  public void run() { 

    for (int i = 0; i < 1000000; i++) { 

      long j = i * i; 

    } 

    System.out.println(“Done with thread!"); 

  } 

 

  public static void main(String args[]) { 

    Runnable task = new MyRunnable(); 

    Thread otherThread = new Thread(task); 

    otherThread.start(); 

    // Following will likely be output before above 

    System.out.println(“Main thread here”); 

  } 

} 
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Creating Your Own Threads— 

Method B 
 The other way to create a thread is: 

1. Extend the Thread class, overriding the run() 

method (let’s call the new class MyThread) 

2. Instantiate your new Mythread class, calling 

the no-arg constructor 

3. Invoke the new MyThread instance’s start() 

method, which will do some setup, then invoke 
its overriding run() method 

Fall 2011 12 



Creating Your Own Threads— 

Method B 
 public class MyThread extends Thread { 

  public void run() { 

    for (int i = 0; i < 1000000; i++) { 

      long j = i * i; 

    } 

    System.out.println(“Done with thread!"); 

  } 

 

  public static void main(String args[]) { 

    Thread otherThread = new MyThread(); 

    otherThread.start(); 

    // Following will likely be output before above 

    System.out.println(“Main thread here”); 

  } 

} 
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Threads: Advanced Topics 

There are many additional facets to threaded 

programming, which we cannot cover here: 

 Scheduling: 

 Pre-emptive scheduling, priorities 

 Memory: 

 Race conditions, and thread-safe code 

 Synchronization: 

 Locks, deadlocks 
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