
CMSC 202

Swing

Fall 2010 2

Introduction to Swing

 Swing is a Java package used to create GUIs

 The Java AWT (Abstract Window Toolkit) package is the original
Java package for doing GUIs

 A GUI (graphical user interface) is a windowing system that
interacts with the user

 The Swing package is an improved version of the AWT
 However, it does not completely replace the AWT

 Some AWT classes are replaced by Swing classes, but other
AWT classes are needed when using Swing

 Swing GUIs are designed using a form of object-oriented
programming known as event-driven programming

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2010 3

Containers and Components

 A Swing GUI consists of two key types of
items: Components and Containers although
the distinction is often blurred because every
Container is a Component

 Component -- a visual control (e.g. button)

 Container - holds and arranges groups of
components

 All Swing GUIs have at least one “top level”
container, the most common of which is the
JFrame

Fall 2010 4

A Simple Window
 A simple window can consist of an object of the JFrame class

 A JFrame object includes a border and the usual three buttons for
minimizing, changing the size of, and closing the window

 The JFrame class is found in the javax.swing package

 This code snippet creates a JFrame and initializes its attributes

 JFrame = new JFrame("This is the title");

 // set the frame's size and position

 frame.setSize(300, 300);

 frame.setLocation(200, 200);

 // close application when window closed

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

Fall 2010 5

A Simple Window (cont’d)

Frame1.java contains the complete code that

creates this window when executed.

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/Frame1.txt

Fall 2010 6

JButton

 One of the most common components of a

GUI is a button that is pushed to perform an

action.

 A button object is created from the class
JButton and can be added to a JFrame

 The argument to the JButton constructor is the

string that appears on the button when it is

displayed.

Fall 2010 7

JButton Example

This code snippet creates a JButton and adds it

to the frame.
 // create and add a button to the frame

 JButton button1 = new JButton("This is Button 1");

 frame.add(button1);

ButtonExample1.java contains the complete

code that creates the window seen on the

next slide.

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/ButtonExample1.txt

Fall 2010 8

A Frame with a Button

Note that the button fills the entire frame

Fall 2010 9

Nothing Happens

 If you copy ButtonExample1.java into Eclipse and run it, you’ll find
that nothing happens when you push the button. What do we need
to do to make “something happen” when the button is pushed?

 1. we need a method to do the "something" when the button is
pushed

 2. we need to know when the button is pushed

 a. first we need to tell the button we want to be told when it's
pushed

 b. the button needs a way to call our method when it's pushed

All of this is implemented using event-driven programming

Fall 2010 10

Events

 Event-driven programming is a programming style
that uses a signal-and-response approach to
programming

 An event is an object that acts as a signal from the
event source to another object known as a listener

 The sending of an event is called firing the event
 The object that fires the event is often a GUI component,

such as a button that has been clicked

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 11

Listeners

 A listener object performs some action in

response to the event

 A given component may have any number of

listeners

 Each listener may respond to a different kind of

event, or multiple listeners might may respond to

the same events

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 12

Event Handlers

 A listener object has methods that specify

what will happen when events of various

kinds are received by it

 These methods are called event handlers

 The programmer using the listener object will

define or redefine these event-handler

methods

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 13

Event Firing and an Event Listener

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 14

Event-Driven Programming

 Event-driven programming is very different from

most programming seen up until now

 So far, programs have consisted of a list of statements

executed in order

 When that order changed, whether or not to perform certain

actions (such as repeat statements in a loop, branch to

another statement, or invoke a method) was controlled by

the logic of the program

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2010 15

Event-Driven Programming

 In event-driven programming, objects are
created that can fire events, and listener
objects are created that can react to the
events

 The program itself no longer determines the
order in which things can happen

 Instead, the events determine the order

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 16

Event-Driven Programming

 In an event-driven program, the next thing that

happens depends on the next event

 In particular, methods are defined that will never be

explicitly invoked in any program

 Instead, methods are invoked automatically when an event

signals that the method needs to be called

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 17

Events and Listener Interfaces

 In Java, every event type has a matching listener
interface.
 For MouseEvents implement the MouseListener

interface

 For WindowEvents implement the WindowListener
interface

 Etc., etc. etc.

 Some interfaces (e.g. MouseListener) have multiple
methods because the event itself can happen in
different ways (mouse pressed, mouse released,
mouseMoved, etc)

 JButtons fire off ActionEvents, so in our example, we
need to implement the ActionListener interface

Fall 2010 18

ActionListener Interface

 The ActionListener interface consists of a
single method
public void actionPerformed(ActionEvent event)

This is the method that we want to be called
when the button is pushed.

This code snippet is a simple implementation
of actionPerformed that changes the
button’s text

 public void actionPerformed(ActionEvent ae)

 {

 button1.setText("I've been pushed");

 }

Fall 2010 19

Registering as a Listener

 Now that we’ve written the actionPerformed

method, we need to tell the button to call it

when the button is pushed. To do that, we

need to register our object as a listener for the

button. To do so we call the button’s
addActionListener method

button1.addActionListener(this);

ButtonExample2.java has the complete application

that shows the working GUI

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/ButtonExample2.txt

Fall 2010 20

Pushing the Button

Before After

Fall 2010 21

Other Common Components

 JLabel – an uneditable line of text

 JTextField – a single line of editable text

 JTextArea – a multi-line area of editable text

 JList – a list for item selection

 JCheckBox – a single on/off choice

 Etc, etc, etc

Fall 2010 22

How are components arranged

 Our example GUI has just one component,

the button. How do put more than one

component into a JFrame?

 By default, a JFrame has 5 regions to which

components can be added. These regions

are defined by the BorderLayout manager.

Fall 2010 23

BorderLayout

BorderLayout is the default layout for a JFrame. We’ll look at other
layouts later.

When we add a component to a JFrame, we specify which region
you want the component placed. Therefore components can be
added in any order.

Fall 2010 24

Using the BorderLayout

 This code snippet places a JButton in

the WEST region and a JLabel in the

NORTH region.
 // create a button and add "this" object as a

listener

 JButton button1 = new JButton("This is Button 1");

 button1.addActionListener(this);

 frame.add(BorderLayout.WEST, button1);

 // create and add the label

 JLabel label1 = new JLabel("I am label 1");

 frame.add(BorderLayout.NORTH, label1);

Fall 2010 25

ButtonExample3

ButtonExample3.java contains the complete

working application in which pushing the

button changes the label’s text.

Before After

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/ButtonExample3.txt

Fall 2010 26

Another Button

 Let’s add a 2nd button to our GUI that will

change the label’s text in a different way.

 Doesn’t a 2nd button mean a 2nd event?

 Absolutely right!

 How do we get ActionEvents from two

different buttons when each button does

something different?

Fall 2010 27

Two Buttons - Option 1

 Implement two actionPerformed()

methods in our class.

 Is this possible?

 If it is possible, how would each button know
which of the two actionPerformed()

methods to call?

Fall 2010 28

Two Buttons – Option 2

 Register our listener object with both buttons.

button1.addActionListener(this);

button2.addActionListener(this);

 But then the actionPerformed() method

would have to figure out which button called

it.

 Not very OO – having one event handler

doing multiple things

Fall 2010 29

Two Button – Option 3

 Create separate ActionListener classes so that
each one can implement actionPerformed

 This would eventually lead to many small classes

 But these separate classes won’t have access

to the frame, buttons, and label defined in our

class.

 Wouldn’t it be nice if you could have two

listener classes that can access the instance

variables inside of our class? Does this sound

familiar?

Fall 2010 30

Two Buttons – Option 4
 Implement separate listener classes as inner classes within the

main GUI class.
// the main GUI class

public class ButtonExample4

{

 // inner listener class for button1

 private class Listener1 implements ActionListener

 {

 public void actionPerformed(ActionEvent ae)

 { label1.setText("Button 1 Pushed"); }

 }

 // inner listener class for button2

 private class Listener2 implements ActionListener

 {

 public void actionPerformed(ActionEvent ae)

 { label1.setText("Button 2 Pushed"); }

 }

 // the rest of ButtonExample4 class

Fall 2010 31

Option 4 cont’d

// somewhere in a method of ButtonExample4

// register the inner classes with the buttons
button1.addActionListener(new Listener1());

button2.addActionListener(new Listener2());

ButtonExample4.java has the complete working

application. Screen shots appear on the next

slide.

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/ButtonExample4.txt

Fall 2010 32

Option 4b: Anonymous Classes
 Create listener classes as anonymous inner classes:
// the main GUI class

public class ButtonExample4b

{

 // … code to create GUI components

 button1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent ae) {

 label1.setText("Button 1 Pushed");

 }

 }

 button2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent ae) {

 label1.setText("Button 2 Pushed");

 }

 }

 // the rest is as for ButtonExample4 class

}

Fall 2010 33

ButtonExample4

Initial Screen After pushing Button 1 After pushing Button 2

Fall 2010 34

Other Layout Mangers

 As we’ve seen, the default layout manager

for a JFrame is the BorderLayout. But this is

not the only layout manager available.

 Two other common layout managers are

 FlowLayout

 GridLayout

Fall 2010 35

FlowLayout Manager

 The FlowLayout manager is the simplest. It

arranges components one after the other, left

to right and top to bottom in the order they

are added to the JFrame.

 Components may be reconfigured if the

JFrame is resized.

 This statement specifies the FlowLayout for

the JFrame

 frame.setLayout(new FlowLayout());

Fall 2010 36

FlowLayout Example

 ButtonExample5.java has the complete
application that creates the frame below
using the FlowLayout manager.

Initial Screen After pushing Button 1

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/ButtonExample5.txt

Fall 2010 37

GridLayout Manager

 The GridLayout manager arranges components in a 2-
dimensional grid with the number or rows and columns
that you specify

 Components are placed in the grid cells left to right
and top to bottom in the order in which they are added.

 All components are sized to fill the grid cell in which
they are placed.

 This code specifies a GridLayout with 1 row and 3
columns which can be used to arrange components
horizontally

 frame.setLayout(new GridLayout(1,3));

Fall 2010 38

GridLayout Example

 ButtonExample6.java contains the complete
application which created the frame below
using the GridLayout manager. Note that the
components fill the grid cells

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/ButtonExample6.txt

Fall 2010 39

JPanel

 A GUI is often organized in a hierarchical fashion,

with containers called panels inside other containers

 A panel is an object of the JPanel class that

serves as a simple container

 It is used to group smaller objects into a larger component

(the panel)

 One of the main functions of a JPanel object is to

subdivide a JFrame or other container

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 40

Panels

 Both a JFrame and each panel in a JFrame can

use different layout managers

 Additional panels can be added to each panel, and

each panel can have its own layout manager

 This enables almost any kind of overall layout to be

used in a GUI

 For example

 Multiple components can be placed in one region of a

BorderLayout by first adding the components to a JPanel,

then adding the JPanel to the BorderLayout region.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 41

JPanel Demo

 The PanelDemo code from the text (display

17.11, starting on page 957) shows the use

of JPanels for subdividing a JFrame.

 PanelDemo.java contains the code from the

text.

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/PanelDemo.txt

Fall 2010 42

PanelDemo

Initial Screen After pushing Green Button

Fall 2010 43

PanelDemo (cont’d)

After pushing the White button After pushing the Gray button

Fall 2010 44

The Container Class

 Any class that is a descendent class of the class Container is
considered to be a container class

 The Container class is found in the java.awt package, not in
the Swing library

 Any object that belongs to a class derived from the Container
class (or its descendents) can have components added to it

 The classes JFrame and JPanel are descendent classes of the
class Container

 Therefore they and any of their descendents can serve as a
container

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 45

The JComponent Class

 Any descendent class of the class
JComponent is called a component class

 Any JComponent object or component can be
added to any container class object

 Because it is derived from the class Container,
a JComponent can also be added to another
JComponent

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 46

Objects in a Typical GUI

 Almost every GUI built using Swing
container classes will be made up of three
kinds of objects:

1. The container itself, probably a panel or
window-like object

2. The components added to the container such
as labels, buttons, and panels

3. A layout manager to position the components
inside the container

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2010 47

Hierarchy of Swing and AWT Classes

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2010 48

Icons

 An icon is a small picture

 Components such as JButtons and JLabels

may be decorated with icons that are created

from .jpg, .gif or .png files

 This code snippet creates an ImageIcon

object then uses it to decorate JLabels
 ImageIcon icon = new ImageIcon(“ant.jpg");

 JLabel label1 = new JLabel(icon);

 JLabel label2 = new JLabel("Image & Text",

 icon, JLabel.CENTER);

Fall 2010 49

Icon Example

 IconExample.java contains the complete

application that created the frame below

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/IconExample.txt

Fall 2010 50

Basic Swing Graphics

 Swing allows applications to draw directly

onto the surface of any component.

 This drawing process is known as "painting.

 Each component inherits the paint()

method from the Component class.

 paint() is called by the system whenever

a component needs to be displayed on the

sreen

Fall 2010 51

More paint()

 paint() calls the methods paintComponent,

paintBorder, paintChildren in that order.

 To paint the surface of a component

 Create a subclass (extend) the component

 Override the paintComponent() method

Fall 2010 52

Overriding paintComponent

// This is part of the PaintDemo1 class

// PaintPanel extends the JPanel so that it can override

// paintComponent() to draw an image and then overwrite

// a portion of the image with an oval

private class PaintPanel extends JPanel

{

 // called by the system when necessary

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g); // always the first thing

 ImageIcon antIcon = new ImageIcon("ant.jpg");

 Image antImage = antIcon.getImage();

 g.drawImage(antImage, 3, 4, this);

 g.fillOval(3, 4, 50, 50); // x, y, width, height

 }

}

// more of PaintDemo1 class follows

Fall 2010 53

Requesting to be Painted

 An application can request that its

components be repainted by calling the
repaint() method for the component.

 Because painting the screen is relatively slow

and unimportant, repaint() only requests that

the system calls paint() as soon as possible.

Fall 2010 54

repaint() example

 This code snippet requests repainting a circle on a panel periodically as part of a
simple animation.

public void launch()

{

 frame.setVisible(true);

 for (int i = 0; i < 150; i++)

 {

 // change the circle's coordinates

 ++x; ++y;

 // force the panel to repaint itself

 paintPanel.repaint();

 try { // wait 50ms

 Thread.sleep(50);

 }catch (Exception ex) {}

 }

}

Fall 2010 55

Animation

SimpleAnimation.java contains the complete

application which uses the code snippet from

the previous slide. The animation moves a

blue circle from the top left corner of the

frame toward the bottom right corner. Three

screenshots on the next slide show how the

animation progress.

http://www.cs.umbc.edu/courses/undergraduate/202/fall07/JavaCode/SimpleAnimation.txt

Fall 2010 56

Animation (cont’d)

