
CMSC 202H

Polymorphism

10/11 2

Topics

 Binding (early and late)

 Upcasting and downcasting

 Extensibility

 The final modifier with

 methods

 classes

10/11 3

Introduction to Polymorphism

 Object-oriented programming mechanisms

 Encapsulation - data and methods together

 Inheritance - extending a class for specialization

 Polymorphism

 Polymorphism

 The ability to associate many meanings with one

method name.

 Accomplished through a mechanism known as

late binding or dynamic binding.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 4

Animal Hierarchy

Animal

Dog Cat Pig

10/11 5

Animals That Speak

public class Animal

{

 public void speak(int x)
{ System.out.println(“ Animal “ + x);}

}

public class Dog extends Animal

{

 public void speak (int x)

 { System.out.println(“Dog “ + x); }

}

public class Cat extends Animal

{
public void speak (int x)

 { System.out.println(“Cat “ + x); }

}

public class Pig extends Animal

{
public void speak (int x)

 { System.out.println(“Pig “ + x); }

}

10/11 6

The ZooDemo Class

In the ZooDemo, we ask each Animal to say hello to
the audience.

public class ZooDemo

{

 // Overloaded type-specific sayHello method

 // for each kind of Animal

 public static void sayHello(Dog d, int i)
 { d.speak(i); }

 public static void sayHello(Cat c, int i)
 { c.speak(i); }

 public static void sayHello(Pig p, int i)
 { p.speak(i); }

 (continued)

10/11 7

The ZooDemo Class

 public static void main(String[] args)

{

 Dog dusty = new Dog();

 Cat fluffy = new Cat();

 Pig sam = new Pig();

 sayHello(dusty, 7);

 sayHello(fluffy, 17);

 sayHello(sam, 27);

 }

} // end Zoo Demo

//------- output -----

Dog 7

Cat 17

Pig 27

10/11 8

Problems with ZooDemo?

 The ZooDemo class contains a type-specific

version of sayHello for each type of Animal.

 What if we add more types of Animals?

 Wouldn’t it be nice to write just one sayHello

method that works for all animals?

10/11 9

New ZooDemo
public class ZooDemo

{

 // One sayHello method whose parameter

 // is the base class works for all Animals

 public static void sayHello(Animal a, int x)
 { a.speak(x); }

 public static void main(String[] args)
{

 Dog dusty = new Dog();

 Cat fluffy = new Cat();

 Pig sam = new Pig();

 sayHello(dusty, 7);

 sayHello(fluffy, 17);

 sayHello(sam, 27);

 }

}

10/11 10

How Does New ZooDemo work?

 Associating the appropriate method definition
with the method invocation is known as
binding.

 Early binding occurs when the method
definition is associated with its invocation
when code is compiled.

 With early binding, the method invoked is
determined by the reference variable type.

 How can the compiler know which Animal’s
speak method to call in sayHello? It can’t!

10/11 11

Late Binding

 The solution is to use late (dynamic) binding.

 Late binding

 The appropriate method definition is associated
with its invocation at run-time.

 The method invoked is determined by the type of
object to which the variable refers, NOT by the
type of the reference variable.

 Java uses late binding for all methods except
 final,

 private (which are implicitly final), and

 static methods.

10/11 12

An Object Knows the Definitions of Its Methods

 The type of a class variable determines which
method names can be used with the variable.

 However, the object named by the variable determines
which definition with the same method name is used.

 A special case of this rule:

 The type of a class parameter determines which method
names can be used with the parameter.

 The argument determines which definition of the method
name is used.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 13

Using Polymorphism

 How do we take advantage of Polymorphism?

 Write code to talk to base class objects (e.g. use

base class references as method parameters).

 Late binding will ensure that the appropriate

method definition is used, even if a reference to a

derived class is passed to the method.

10/11 14

More Animals

Animal

Dog Cat Pig Horse

Poodle Collie

10/11 15

Extensibility
 Suppose more Animals were added to the hierarchy as shown in the

previous diagram.

 All of these new classes work correctly with the old, unchanged
sayHello method of the ZooDemo because sayHello’s parameter is
a base class reference.

 In a well designed OOP program, most of your methods will follow
the model of sayHello and communicate with a base class reference
and let late binding and polymorphism determine which sayHello
method to call.

 Such a program is called extensible because you can add new
functionality by deriving new classes from the base class without
changing existing code.

10/11 16

The final Modifier

 A method marked final indicates that it cannot be
overridden with a new definition in a derived class.

 If final, the compiler can use early binding with the
method.

public final void someMethod() { . . . }

 A class marked final indicates that it cannot be
used as a base class from which to derive any other
classes.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 17

 If an appropriate toString method is defined for a class, then

an object of that class can be output using

 System.out.println();

As in this code snippet

 Animal max = new Animal();

System.out.println(max);

 This works because of late binding.

Late Binding with toString

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 18

Late Binding with toString
 One definition of the method println takes a single argument

of type Object:

public void println(Object theObject)

{

 System.out.println(theObject.toString());

}

 In turn, It invokes the version of println that takes a String
argument.

 Note that the println method was defined before the Animal
class existed.

 Because of late binding, the toString method from the Animal
class is used, not the toString from the Object class.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 19

Upcasting and Downcasting
 Upcasting occurs when an object of a derived class is assigned

to a variable of a base class (or any ancestor class).

Animal animalVariable; // base class

Dog dogVariable = new Dog(); // derived class

animalVariable = dogVariable; // upcasting

animalVariable.speak(42); // “Dog 42” is printed

Or we could do something equivalent, such as

 Animal animal = new Dog();

 Because of late binding, speak uses the definition of speak
given in the Dog class.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/11 20

Upcasting and Downcasting
 Downcasting occurs when a type cast is performed from a base

class to a derived class (or from any ancestor class to any
descendent class).

 Downcasting must be done very carefully.

 In many cases it doesn't make sense, or is illegal:

dogVariable = //will produce

 (Dog)animalVariable; //run-time error

dogVariable = animalVariable //will produce

 //compiler error

 There are times when downcasting is necessary; e.g.,
inside the equals method for a class:

 Dog otherDog = (Dog)otherDog; //downcasting

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

