CMSC 202H

Polymorphism

Topics

Binding (early and late)
Upcasting and downcasting
Extensibility

The final modifier with
o methods
o classes

10/11

Introduction to Polymorphism

10/11

Object-oriented programming mechanisms
o Encapsulation - data and methods together

o Inheritance - extending a class for specialization
o Polymorphism

Polymorphism

o The abllity to associate many meanings with one
method name.

o Accomplished through a mechanism known as
late bindingordynamic binding.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

‘ Animal Hierarchy

Animals That Speak

public class Animal

{
public void speak(int x)
{ System.out.println(“ Animal “ + x);}

}

public class Dog extends Animal
{

public void speak (int x)

{ System.out.println(“Dog “ + x); }
}

public class Cat extends Animal

{

public void speak (int x)
{ System.out.println(“Cat ™ + x); }
}

public class Pig extends Animal

{

public void speak (int x)
{ System.out.println(“Pig “ + x); }

10/11

The ZooDemo Class

In the ZooDemo, we ask each Animal to say hello to
the audience.

public class ZooDemo

{
// Overloaded type-specific sayHello method

// for each kind of Animal

public static void sayHello(Dog d, int i)
{ d.speak(i); }

public static void sayHello(Cat ¢, int i)
{ c.speak(i), }

public static void sayHello(Pig p, int i)
{ p.speak(i); }

(continued)

10/11

The ZooDemo Class

public static void main(String[] args)

{
Dog dusty = new Dog()

Cat fluffy = new Cat(),
Pig sam = new Pig();

sayHello(dusty, 7);
sayHello(fluffy, 17);
sayHello(sam, 27);

}
} // end Zoo Demo

10/11

Problems with ZooDemo?

The ZooDemo class contains a type-specific
version of sayHello for each type of Animal.

What if we add more types of Animals?

Wouldn't it be nice to write just one sayHello
method that works for all animals?

10/11

New ZooDemo

public class ZooDemo

{

// One sayHello method whose parameter
// is the base class works for all Animals

public static void sayHello(Animal a, int x)
{ a.speak(x); }

public static void main(String[] args)

{
Dog dusty = new Dog(),

Cat fluffy = new Cat();
Pig sam = new Pig();

sayHello(dusty, 7);

sayHello(fluffy, 17);
sayHello(sam, 27);

10/11

How Does New ZooDemo work?

Associating the appropriate method definition
with the method invocation is known as
binding.

Early binding occurs when the method
definition is associated with its invocation
when code Is compiled.

o With early binding, the method invoked is
determined by the reference variable type.

How can the compiler know which Animal’s
speak method to call in sayHello? It can't!

10/11 10

Late Binding

The solution Is to use late (dynamic) binding.
Late binding

o The appropriate method definition is associated
with Its invocation at run-time.

o The method invoked is determined by the type of
object to which the variable refers, NOT by the
type of the reference variable.

Java uses late binding for all methods except
o final,

o private (which are implicitly final), and
o static methods.

10/11 11

An Object Knows the Detinitions of Its Methods

10/11

The type of a class variable determines which
method names can be used with the variable.

o However, the object named by the variable determines
which definition with the same method name is used.

A special case of this rule:

o The type of a class parameter determines which method
names can be used with the parameter.

o The argument determines which definition of the method
name is used.

12

Using Polymorphism

How do we take advantage of Polymorphism?

2 Write code to talk to base class objects (e.g. use
base class references as method parameters).

o Late binding will ensure that the appropriate
method definition is used, even if a reference to a
derived class is passed to the method.

10/11 13

‘ More Animals

Extensibility

Suppose more Animals were added to the hierarchy as shown in the
previous diagram.

All of these new classes work correctly with the old, unchanged
sayHello method of the ZooDemo because sayHello’s parameter is
a base class reference.

In a well designed OOP program, most of your methods will follow
the model of sayHello and communicate with a base class reference
and let late binding and polymorphism determine which sayHello
method to call.

Such a program is called extensible because you can add new
functionality by deriving new classes from the base class without
changing existing code.

10/11 15

The £inal Modifier

A method marked £inal indicates that it cannot be
overridden with a new definition in a derived class.

o If £inal, the compiler can use early binding with the
method.

public final void someMethod() { . . . }

A class marked £inal indicates that it cannot be

used as a base class from which to derive any other
classes.

Copyright © 2008 Pearson Addison-Wesley.

10/11 All rights reserved 16

Late Binding with toString

= If an appropriate toString method is defined for a class, then
an object of that class can be output using
System.out.println() ;

As in this code snippet

Animal max = new Animal() ;

System.out.println (max) ;

= This works because of late binding.

Copyright © 2008 Pearson Addison-Wesley.
10/11 All rights reserved

17

Late Binding with toString

One definition of the method println takes a single argument
of type Object:

public void println (Object theObject)
{
System.out.println (theObject.toString()) ;

}

o Inturn, It invokes the version of println that takes a String
argument.

Note that the println method was defined before the Animal
class existed.

Because of late binding, the toString method from the Animal
class is used, not the toString from the Object class.

10/11

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

18

‘ Upcasting and Downcasting

= Upcasting occurs when an object of a derived class Is assigned
to a variable of a base class (or any ancestor class).

Animal animalVariable; // base class

Dog dogVariable = new Dog(); // derived class
animalVariable = dogVariable; // upcasting
animalVariable.speak (42) ; // “Dog 42” is printed

Or we could do something equivalent, such as

Animal animal = new Dog()

= Because of late binding, speak uses the definition of speak
given in the Dog class.

Copyright © 2008 Pearson Addison-Wesley.

10/11 All rights reserved 19

‘ Upcasting and Downcasting

= Downcasting occurs when a type cast is performed from a base
class to a derived class (or from any ancestor class to any
descendent class).

o Downcasting must be done very carefully.
o In many cases it doesn't make sense, or is illegal:

dogVariable = //will produce
(Dog) animalVariable; //run-time error
dogVariable = animalVariable //will produce

//compiler error

o There are times when downcasting is necessary; e.g.,
Inside the equals method for a class:

Dog otherDog = (Dog)otherDog; //downcasting

Copyright © 2008 Pearson Addison-Wesley.
10/11 All rights reserved

20

