
CMSC 202H

Polymorphism

10/11 2

Topics

 Binding (early and late)

 Upcasting and downcasting

 Extensibility

 The final modifier with

 methods

 classes

10/11 3

Introduction to Polymorphism

 Object-oriented programming mechanisms

 Encapsulation - data and methods together

 Inheritance - extending a class for specialization

 Polymorphism

 Polymorphism

 The ability to associate many meanings with one

method name.

 Accomplished through a mechanism known as

late binding or dynamic binding.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 4

Animal Hierarchy

Animal

Dog Cat Pig

10/11 5

Animals That Speak

public class Animal

{

 public void speak(int x)
{ System.out.println(“ Animal “ + x);}

}

public class Dog extends Animal

{

 public void speak (int x)

 { System.out.println(“Dog “ + x); }

}

public class Cat extends Animal

{
public void speak (int x)

 { System.out.println(“Cat “ + x); }

}

public class Pig extends Animal

{
public void speak (int x)

 { System.out.println(“Pig “ + x); }

}

10/11 6

The ZooDemo Class

In the ZooDemo, we ask each Animal to say hello to
the audience.

public class ZooDemo

{

 // Overloaded type-specific sayHello method

 // for each kind of Animal

 public static void sayHello(Dog d, int i)
 { d.speak(i); }

 public static void sayHello(Cat c, int i)
 { c.speak(i); }

 public static void sayHello(Pig p, int i)
 { p.speak(i); }

 (continued)

10/11 7

The ZooDemo Class

 public static void main(String[] args)

{

 Dog dusty = new Dog();

 Cat fluffy = new Cat();

 Pig sam = new Pig();

 sayHello(dusty, 7);

 sayHello(fluffy, 17);

 sayHello(sam, 27);

 }

} // end Zoo Demo

//------- output -----

Dog 7

Cat 17

Pig 27

10/11 8

Problems with ZooDemo?

 The ZooDemo class contains a type-specific

version of sayHello for each type of Animal.

 What if we add more types of Animals?

 Wouldn’t it be nice to write just one sayHello

method that works for all animals?

10/11 9

New ZooDemo
public class ZooDemo

{

 // One sayHello method whose parameter

 // is the base class works for all Animals

 public static void sayHello(Animal a, int x)
 { a.speak(x); }

 public static void main(String[] args)
{

 Dog dusty = new Dog();

 Cat fluffy = new Cat();

 Pig sam = new Pig();

 sayHello(dusty, 7);

 sayHello(fluffy, 17);

 sayHello(sam, 27);

 }

}

10/11 10

How Does New ZooDemo work?

 Associating the appropriate method definition
with the method invocation is known as
binding.

 Early binding occurs when the method
definition is associated with its invocation
when code is compiled.

 With early binding, the method invoked is
determined by the reference variable type.

 How can the compiler know which Animal’s
speak method to call in sayHello? It can’t!

10/11 11

Late Binding

 The solution is to use late (dynamic) binding.

 Late binding

 The appropriate method definition is associated
with its invocation at run-time.

 The method invoked is determined by the type of
object to which the variable refers, NOT by the
type of the reference variable.

 Java uses late binding for all methods except
 final,

 private (which are implicitly final), and

 static methods.

10/11 12

An Object Knows the Definitions of Its Methods

 The type of a class variable determines which
method names can be used with the variable.

 However, the object named by the variable determines
which definition with the same method name is used.

 A special case of this rule:

 The type of a class parameter determines which method
names can be used with the parameter.

 The argument determines which definition of the method
name is used.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 13

Using Polymorphism

 How do we take advantage of Polymorphism?

 Write code to talk to base class objects (e.g. use

base class references as method parameters).

 Late binding will ensure that the appropriate

method definition is used, even if a reference to a

derived class is passed to the method.

10/11 14

More Animals

Animal

Dog Cat Pig Horse

Poodle Collie

10/11 15

Extensibility
 Suppose more Animals were added to the hierarchy as shown in the

previous diagram.

 All of these new classes work correctly with the old, unchanged
sayHello method of the ZooDemo because sayHello’s parameter is
a base class reference.

 In a well designed OOP program, most of your methods will follow
the model of sayHello and communicate with a base class reference
and let late binding and polymorphism determine which sayHello
method to call.

 Such a program is called extensible because you can add new
functionality by deriving new classes from the base class without
changing existing code.

10/11 16

The final Modifier

 A method marked final indicates that it cannot be
overridden with a new definition in a derived class.

 If final, the compiler can use early binding with the
method.

public final void someMethod() { . . . }

 A class marked final indicates that it cannot be
used as a base class from which to derive any other
classes.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 17

 If an appropriate toString method is defined for a class, then

an object of that class can be output using

 System.out.println();

As in this code snippet

 Animal max = new Animal();

System.out.println(max);

 This works because of late binding.

Late Binding with toString

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 18

Late Binding with toString
 One definition of the method println takes a single argument

of type Object:

public void println(Object theObject)

{

 System.out.println(theObject.toString());

}

 In turn, It invokes the version of println that takes a String
argument.

 Note that the println method was defined before the Animal
class existed.

 Because of late binding, the toString method from the Animal
class is used, not the toString from the Object class.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 19

Upcasting and Downcasting
 Upcasting occurs when an object of a derived class is assigned

to a variable of a base class (or any ancestor class).

Animal animalVariable; // base class

Dog dogVariable = new Dog(); // derived class

animalVariable = dogVariable; // upcasting

animalVariable.speak(42); // “Dog 42” is printed

Or we could do something equivalent, such as

 Animal animal = new Dog();

 Because of late binding, speak uses the definition of speak
given in the Dog class.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/11 20

Upcasting and Downcasting
 Downcasting occurs when a type cast is performed from a base

class to a derived class (or from any ancestor class to any
descendent class).

 Downcasting must be done very carefully.

 In many cases it doesn't make sense, or is illegal:

dogVariable = //will produce

 (Dog)animalVariable; //run-time error

dogVariable = animalVariable //will produce

 //compiler error

 There are times when downcasting is necessary; e.g.,
inside the equals method for a class:

 Dog otherDog = (Dog)otherDog; //downcasting

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

