
CMSC 202H

Fall 2011, Honors Section

Designing with Objects

Programming & Abstraction

• All programming languages provide some form of
abstraction.
– Also called information hiding

– Separating how one uses a program module from its
implementation details

• Procedural languages:
– Data abstraction: using data types

– Control abstraction: using functions

• Object-oriented languages:
– Data and control abstraction: using classes

• Our world is object-oriented.

Version 9/10 2

Procedural vs. OO Programming

Version 9/10 3

Examples: C, Pascal, Basic,

Python

Modular units: functions

Program structure: hierarchical

Data and operations are not bound

to each other.

Examples: Java, C++, Ruby

Modular units: objects

Program structure: a graph

Data and operations are bound

to each other.

Procedural Object-Oriented (OO)

A Hierarchy of

Functions

A Collection of

Objects

Encapsulation

• We will use the term encapsulation in two

different ways in this class (and in the text)

• Definition #1: "Inclusion" (―bundling"):

• bundling of structure and function

• Definition #2: ―Exclusion‖ (―access control‖)

• Strict, explicit control of how our objects can be used

Version 9/10 4

Procedural vs OO: Example

• Procedural:
 if (shape.type == SQUARE)

 area = shape.width ** 2;

 else if (shape.type == TRIANGLE)

 area = (shape.width * shape.height) / 2;

 else if (shape.type == CIRCLE)

 area = ((shape.width / 2) ** 2) * PI;

OO:
shape.getArea();

Version 9/10 5

Objects are Models

Model Type I: Objects as Models of the Real World

• Programming ―objects‖ are accurate representations
of physical entities

• Goal is realism

• We want to create representations of ―things‖, with:
• Observable attributes

• Physical functionality

• E.g.: Physical vending machine:

• A given bin has physical capacity limit

• float binDepth, spiralTurnSize;

Version 9/10 6

Objects are Models

Model Type II: Objects as Models of Conceptual
Entities

• We think programmatically from the outset

• Goal is to simplify programming

• E.g.: generic vending machine slot representation

• A bin is an unbounded array

(a pysical vending machine cannot recalibrate once built)

• Might also want to track ―numItemsVended‖, e.g., to find

popular positions.

• Not restricted to what is a ―physical attribute‖

Version 9/10 7

Objects are Models

• Should we use physical or abstract model?

• Humans are better at relating to physical

• Computers can take advantage of abstract

• General rule: start with concrete, then start

abstracting, extending

• Don’t be dogmatic!

Version 9/10 8

What Parts to Model:

• Depends on purpose of model

• Can not (and should not) model everything

• Can try to anticipate likely future needs, though

• Running Theme #1 (RT1): ―Multiply-by-PI Rule‖

• E.g.: Bank Account

• Account type

• Account number

• Name

• Address

• Balance
Version 9/10 9

What Parts to Model:

• ... But what about:

• Transaction history

• Number of overdrafts

• Interest rate

• This might be function of account type (stored in bank-wide

object)

• …Or, might also want to be able to set individually per-account

• Also, might want to extract personal info (name,

address, etc.) into separate object

Version 9/10 10

What Parts to Model:

• What about methods?

• Again, same considerations of:

• Physical vs. abstract models

• Designing for future needs

Version 9/10 11

Order of Design Tasks

• In general, do data layout first

• I.e., consider ―complete‖ set of attributes you want to

model; aka:

• state variables

• properties

• instance variables (Java’s term)

• Then do top-level design of functionality

needed (methods)

• Easier once you have attributes in mind

• After initial design, we refine iteratively
Version 9/10 12

Related Concepts

• Composition

• A mechanism for incorporating other, existing objects

as components of our new object

• Inheritance

• A way to incrementally build on the design of existing

objects to create related, more complex objects

Version 9/10 13

Classes

• All objects are unique.

• Objects that are identical except for their
state can be grouped into a class.

• Class of cars

• Class of birds

• Class of playing cards

• Class of bakers

Version 9/09 15

Classes

• A class definition serves as a template for

creating one or more related objects.

• A Car class can be used to create different car

objects

• A Bird class can be used to create several birds

• The blueprint defines

• The class’s state/attributes as variables

• The class’s behavior, as methods

16

A Class is a Model

• A class is a model for a group of similar objects.

• The focus of the class is the common behavior

of the objects the class models.

• A class’s behavior may also be referred to as

services, operations, actions, or commands.

• The model also contains common attributes of

the objects.

• The attributes exist to support the model’s behaviors.

• The actual stored values vary from object to object

 Version 9/09 17

Objects, Classes

 If a class is:

 A data type defining a template for a set of:

 Attributes - make up the object’s ―state‖

 Operations - define the object’s ―behaviors‖

Version 9/10 18

deposit money

withdraw money

check balance

transfer money

more?

Bank Account

account number

owner’s name

balance

interest rate

more?

String

sequence of characters

more?

compute length

concatenate

test for equality

more?
operations

(behaviors)

name

attributes

(state)

Objects, Classes

 …Then an object is a particular ―instance‖ of

a class.

Version 9/10 19

Bergeron’s Account Frey’s Account Mitchell’s Account

43-261-5

Susan Mitchell

$825.50

2.5%

For any of these accounts, one can

• deposit money

• withdraw money

• check the balance

• transfer money

12-345-6

Ryan Bergeron

$1,250.86

1.5%

65-432-1

Dennis Frey

$5.50

2.7%

Classes vs. Instances

There is always inherent tension between:

 Designing classes to be more inclusive/general,

w/discriminating attributes in each object

vs.

 Making each class more specific, and being able

to assume more defaults, but having more

partitioning of set of instances

Version 9/10 20

Classes vs. Instances

• You can have class Bird, w/attribute ―canFly‖

• …or you can have classes FlyingBird and

FlightlessBird, with ―canFly‖ being implicit in

instances of each class.

• Silly, extreme example:

 class AccountsWithBalanceOf_199_97

which only has instances of accounts with a

balance of $199.97

Version 9/10 21

Common vs. Different

Note—in Java:

• Set of methods is common to all objects in a

class

• Set of instance variable definitions are common

to all objects in a class

• BUT: Instance variable assignments are unique

to each object in a class

 So: methods define what is common across

class, instance variables define what differs

Version 9/10 22

Class Examples

What services/behaviors might be appropriate

for the following things?

A red-green-yellow traffic light

A garage door opener

A bank account

Version 9/09 23

A Class is a Type

An Object is a Variable

Variables of any particular class type may be
created just like variables of built-in types.
All objects of type Bakery have similar (class) properties.

You can create as many objects of the class type
as you like.
There is more than one Bakery in Baltimore.

OOP challenge is to define the classes and create
the objects that match the problem.
Do we need an Oven class?

Version 9/09 24

Class Interface

The requests you can make of an object are determined by
its interface.

The interface is determined by its class type.

IMPORTANT

Do you need to know how a bakery works to get bread?

Who needs to know how a bakery works?

Version 9/09 25

Bakery

makeBagel()

makeBread()

sellBagel()

sellBread()

TYPE

INTERFACE

Implementation

Code and hidden data in the object that satisfies

requests comprise the implementation.

What’s hidden in a bakery?

Each request in the interface has an associated

method. When a particular request is made, that

method is called.

In OO-speak we say that you are sending a

message to the object, which responds to the

message by executing the appropriate code.

Version 9/09 26

