
Classes and Objects

In Java

CMSC 202H (Honors Section)

John Park

A Class Is a Type

• A class is a programmer-defined type.

• Variables can be declared of a class type.

• A value of a class variable type is called an
object or an instance of the class.

– If A is a class, then the phrases

• “X is of type A“

• “X is an object of the class A"

• “X is an instance of the class A"

 mean the same thing

Version 9/10 3

Objects

• All objects of a class have the same methods.

• All objects of a class have the same attributes
(i.e., name, type, and number).

– For different objects, each attribute can hold a
different value.

– The values of the attributes define the object state,
which is what makes each object unique.

Version 9/10 4

The Class Definition

• A class definition implements the class model.

– The class behaviors/services/actions/operations are

implemented by class methods.

– The class attributes (data items) are called fields or

instance variables.

• In Java, classes are defined in files with the .java

extension.

• The name of the file must match the name of the

class defined within it.

– e.g. class „Baker‟ must be in Baker.java

Version 9/10 5

Anatomy of a Java Class

Visibility modifier
(More on this later) Name of the class Keyword class

public class Date1

{

}

Class body: instance variables, methods

NO semi-colon

Version 9/10 6

Instance Variables

• Defined inside the class definition

• May be
– primitive types

– other class types

• Are accessible by all methods of the class
– have class scope

• Given the services identified for the red-green-
yellow traffic light, the garage door opener and
the bank account, what instance variables might
be defined for each?

Version 9/10 7

Anatomy of a Method

Are very much like functions

Visibility modifier
(More on this later)

Name of the method

return type

public double toCelcius

{

}

Method code: local variables and statements

 (double fTemp)

Optional parameters

Version 9/10 8

Example: A Date Class

This class definition goes in a file named
Date1.java.

public class Date1

{

 public String month;
public int day;

 public int year;

 public String toString()

 {

 return month + “ “ + day + “, “ + year;

 }

}

These are the (public)“data members” or

“instance variables” of the class

This is a method definition and its

implementation

A method may use the class instance variables

Version 9/10 9

Date1 toString Method

• toString is a method of the Date1 class.

– Its definition and implementation are part of the Date1

class.

• Class methods may

– be void or return a value, and

– (optionally) have parameters, which may be

• primitive types passed by value, and/or

• objects (discussed later).

• All of a class‟ methods have access to all of the

class‟ instance variables (class scope).

Version 9/10 10

Using Date1
This class definition goes in a file named Date1Demo.java.

public class Date1Demo

{

 public static void main(String[] args)
{
 Date1 myDate;
 myDate = new Date1();

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

 String dateString = myDate.toString();

 System.out.println(dateString);

 }

}

Create a Date1 object

named myDate

Give values to the data

members

Invoke the toString method

Version 9/10 11

Using Date1
This class definition goes in a file named Date1Demo.java.

public class Date1Demo

{

 public static void main(String[] args)
{
 Date1 myDate;
 myDate = new Date1();

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

 String dateString = myDate.toString();

 System.out.println(dateString);

 }

}

Create a Date1 object

named myDate

Version 9/10 12

Creating the Date1 Object

• The statement Date1 myDate; defines a variable of
type Date1.
– But there is no Date1 object yet!

• The statement myDate = new Date1(); creates a
“new” Date1 object and assigns a reference to it, to
the variable “myDate”.
– Now “myDate” refers to a Date1 object.

• For convenience, these statements can be
combined.

 Date1 myDate = new Date1();

Version 9/10 13

Using Date1
This class definition goes in a file named Date1Demo.java.

public class Date1Demo

{

 public static void main(String[] args)
{
 Date1 myDate;
 myDate = new Date1();

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

 String dateString = myDate.toString();

 System.out.println(dateString);

 }

}

Give values to the data

members

Version 9/10 14

“Dot” Notation

• Public instance variables of an object are
referenced using the “dot” operator.

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

• Instance variables can be used like any other
variable of the same type.

• The set of values stored in all instance variables
define the state of the myDate object.

Version 9/10 15

Using Date1
This class definition goes in a file named Date1Demo.java.

public class Date1Demo

{

 public static void main(String[] args)
{
 Date1 myDate;
 myDate = new Date1();

 myDate.month = “July”;
 myDate.day = 4;
 myDate.year = 2007;

 String dateString = myDate.toString();

 System.out.println(dateString);

 }

}

Invoke the toString method

Version 9/10 16

More “Dot” Notation

• The statement

myDate.toString();

 invokes the toString method of myDate, which
refers to an object of type Date1.

• In OO terminology, we say that we are “sending
the toString message” to the object referred to
by myDate.

• The object myDate is referred to as the calling
object or host object.

Version 9/10 17

Calling Object

• Generally invoke methods from the calling

object

– E.g.: “myDate.toString();”

• Method is being invoked on behalf of

calling object

• Method‟s body has easy direct access to

calling object

– Can easily access its instance variables

– Can invoke calling object‟s other methods

Version 9/10 18

Accessing Members Inside Class

• Accessing instance variables:
– In many cases, can access instance variables

by simple name:
• when any (non-static) method is called, references

from within the method body to instance variables
by name are assumed to apply to the calling/host
object

• Accessing class methods:
– When invoking any other method of the

calling object, inside the same class, you just
use the method name (no “dot” notation)

• Invoked method also retains same calling object

Version 9/10 19

Other Date Methods

Some other possible services that the Date1

class might provide:

• incrementDay - changes the date to

“tomorrow”

• DMYString – creates a different string format

• setDate - initialize/change the year, month,

and/or day

• What others ?

Version 9/10 20

New Date1 Methods
 // change the month (using an int), day, and year.

 public void setDate(int newMonth, int newDay, int newYear)

 {

 month = monthString(newMonth);

 day = newDay;

 year = newYear;

 }

 // change month number (int) to string - used by setDate

 public String monthString(int monthNumber) {

 switch (monthNumber) {

 case 1: return "January";

 case 2: return "February";

 case 3: return "March";

 case 4: return "April";

 case 5: return "May";

 case 6: return "June";

 case 7: return "July";

 case 8: return "August";

 case 9: return "September";

 case 10: return "October";

 case 11: return "November";

 case 12: return "December";

 default: return “????”;

 }

 }

 Version 9/10 21

Confusion?

• In the preceding setDate method it‟s tempting to define
the method using the common terms “month”, “day” and
“year” as the parameters.

public void setDate(int month, int day, int year)

 {

 month = monthString(month);// which month is which?

 day = day; // which day is which?

 year = year; // which year is which?

 }

However, parameter variables take precedence over

instance variables, so the compiler will assume in this
case that all uses of day, month, and year refer to the
method parameters, and hence this code has no effect.

Version 9/10 22

Calling Object

What the code in setDate is really trying to do is

public void setDate(int month, int day, int year)

 {

 “calling object”.month = monthString(month);
 “calling object”.day = day;

 “calling object”.year = year;

 }

It‟s handy (and sometimes necessary) to have a name for
the calling object.

In Java, we use the reserved keyword this as the generic
name of the calling object.

Version 9/10 23

Using this

So, if we want to name our parameters the same as our
instance variables:

 public void setDate(int month, int day, int year)

 {

 this.month = monthString(month); // notice “this”

 this.day = day;

 this.year = year;

 }

Note:

• Many examples in the text use this technique for class
methods.

• Some Java programmer tools (including Eclipse) use this
technique when writing code for you.

Version 9/10 24

this Again
Recall the toString method from Date1:

 public void toString()

 {

 return month + “ “ + day + “ “ + year;

 }

It‟s clear that month, day, and year refer to the instance
variables of the calling object because there are no
parameters.

We could have written:
 public void toString()

 {

 return this.month + “ “ + this.day + “ “ + this.year;

 }

Even when the prefix this is not strictly necessary, it is often
included for clarity..

Version 9/10 25

Sample Code Segment Using Date1

Date1 newYears = new Date1();

newYears.month = “January”;

newYears.day = 1;

newYears.year = 2008;

Date1 birthday = new Date1();

birthday.month = “July”;

birthday.day = 4;

birthday.year = 1776;

System.out.println(newYears.toString()); // line 1

System.out.println(birthday.toString()); // line 2

System.out.println(birthday.monthString(6)); // line 3

birthday.setDate(2, 2, 2002); // line 4

System.out.println(birthday.toString()); // line 5

newYears.day = 42; // line 6

System.out.println(newYears.toString()); // line 7

Version 9/10 26

January 42, 2008

• It appears that classes allow the user to

change the data anytime he or she

chooses, possibly making the data invalid.

• That‟s true so far because we have

defined our instance variables with
public access.

• This is rarely the case in real applications.

Version 9/10 27

Version 9/10 28

More About Methods

• Different classes can define a method with the same
name.

• Java can determine which method to call based on the
type of the calling object.

• Example:

 Date1 birthday = new Date1();

 Dog fido = new Dog();

 System.out.println(birthday.toString());

 System.out.println(fido.toString());

– birthday.toString() will call the toString() method
defined in the Date1 class because birthday‟s type is Date1.

– fido.toString() will call the toString() method defined in
the Dog class because fido‟s type is Dog.

Version 9/10 29

Method Overloading

• Two or more methods in the same class

may also have the same name.

• This technique is known as method

overloading.

Version 9/10 30

Overloaded setDate

• The Date1 class setDate method:

public boolean setDate(int month, int day, int year)

• Suppose we wanted to change only the day

and year?

– Define another method named setDate:

 public boolean setDate(int day, int year)

(After all, setDate is a good descriptive name for

what this method does.)

Version 9/10 31

Date2 Class - Overloaded setDate

Method
public class Date2

{

 public String month;

 public int day; // 1 - 31

 public int year; // 4 digits

 public boolean setDate(int newMonth, int newDay, int newYear)

 {

 // code here

 }

 public boolean setDate(int newDay, int newYear);

 {

 // code here, doesn’t change month

 }

 // toString(), monthString(), etc. follow

}

Version 9/10 32

Date2Demo Class

public class Date2Demo

{

 public static void main (String[] args)

 {

 Date2 myDate = new Date2();

 myDate.setDate(1, 23, 1982);

 System.out.println(myDate.toString());

 myDate.setDate(4, 1999);

 System.out.println(myDate.toString());

 }

}

How does Java know which setDate method to invoke?

Version 9/10 33

Method Signature

• A method is uniquely identified by
– its name and

– its parameter list: more specifically, just the
sequence of types.

• This is known as its signature.

Examples:

public boolean setDate(int newMonth, int newDay, int newYear)

public boolean setDate(String newMonth, int newDay, int newYear)

public boolean setDate(int newDay, int newYear)

public boolean setDate(int newDay, String newMonth)

// But adding this next one will cause problems:

public boolean setDate(int newYear, int dayOfYear)

Version 9/10 34

Return Type is Not Enough

• Suppose we attempt to create an overloaded
setDay() method by using different return types.

 public void setDay(int day) { /* code here */ }

 public boolean setDay(int day) { /* code here */ }

• This is NOT valid method overloading because the
code that calls setDay() can ignore the return
value.
 birthday.setDay(22);

• The compiler can‟t tell which setDay() method to
invoke.

• Just because a method returns a value doesn‟t
mean the caller has to use it.

Version 9/10 35

Too Much of a Good Thing
Automatic type promotion and overloading can

sometimes interact in ways that confuse the
compiler. Example:

public class X {

 //version 1

 public void printAverage (int a, double b) {
 /*code*/
 }

 //version 2

 public void printAverage (double a, int b) {
 /*code*/
 }

}

Why might this be problematic?

Version 9/10 36

Too Much of a Good Thing

 public void printAverage (int a, double b) {/*code*/}

 public void printAverage (double a, int b) {/*code*/}

• Now, consider this:

 X myX = new X();

 myX.printAverage(5, 7);

• The Java compiler can‟t decide whether to:
– promote 7 to 7.0 and invoke the first version of

printAverage(), or

– promote 5 to 5.0 and invoke the second.

• It will throw up its hands and complain

• Take-home lesson: don‟t be too clever with
method overloading

CMSC202 Standards: Comments

• CMSC202 has fairly strict documentation

standards.

• In Advanced Sect., we will be a little more

Javadoc-compliant.

• Separate templates for class header and

method headers

Version 9/10 37

Class-level Documentation

• Class header format:

/**

 * File: Table.java

 * Project: CMSC 202 Project 3, Fall 2010

 * Date: 9/26/2010

 * Section: 13

 * E-mail: jdoe22@umbc.edu

 * Class Description:

 * Class Invariant

 * 1. number of legs is either 3 or 4

 * 2. shape is one of ROUND, RECTANGLE or OVAL

 * @author Bob Smith

 */

Version 9/10 38

Method-level Documentation

• Method header format:

/**

 * Name: circleArea

 * PreCondition: the radius is greater than zero

 * PostCondition: none

 * @param radius - the radius of the circle

 * @return the calculated area of the circle

 * (@throws – optional)

 */

double circleArea (double radius) {

 // handle unmet precondition

 if (radius < 0.0) {

 return 0.0;

 } else {

 return Math.PI * radius * radius;

 }

}

Version 9/10 39

Instance Variable Documentation

• Javadoc wants the variable descriptions on line

before actual declaration:

/** first name of the account holder */

String firstName;

/**

 * the last name of the account holder

 * (note we can have a multi-line description).

 */

String lastName;

Version 9/10 40

Method Documentation

• Clear communication with the class user is of

paramount importance so that he can

– use the appropriate method, and

– use class methods properly.

• Method comments:

– explain what the method does, and

– describe how to use the method.

• Two important types of method comments:

– precondition comments

– post-conditions comments

Version 9/10 41

Preconditions and Postconditions

• Precondition

– What is assumed to be true when a method is

called

– If any pre-condition is not met, the method may

not correctly perform its function.

• Postcondition

– States what will be true after the method

executes (assuming all pre-conditions are met)

– Describes the side-effect of the method, e.g. if

state of instance changes
Version 9/10 42

An Example

Very often the precondition specifies the limits of the
parameters and the postcondition says something
about the return value.

/*

 Pre-condition:

 1 <= month <= 12

 day appropriate for the month

 1000 <= year <= 9999

 Post-condition:

 The month, day, and year of the calling object
have been set to the parameter values.

 @return true if the calling object has been changed,
 false otherwise

*/

public boolean setDate(int month, int day, int year)

{

 // code here

}

Version 9/10 43

