
Review of Java Basics

CMSC 202H (Honors Section)

John Park

Simple ―Procedural‖ Java

2

public class MyClass {
 static boolean sawNonZero = false;

 public static void main(String[] args) {
 System.out.print(―Hello, world‖);

 int quotient;

 quotient = 3 / 4;
 if (testNonZero(quotient)) {
 System.out.print(―\nQuotient is non-zero\n‖);
 }

 }

 static boolean testNonZero(int value) {
 if (value != 0) {
 sawNonZero = true;
 return true;
 } else

 return false;
 }

}

3

Java Program Basics

• All code has to be inside some class definition

– For now, we can think of this in terms of file/module, or

namespace

• All programs begin execution at main()

• This is much like in C, but…

• You can have a different main() in every class: pick at runtime

• System.out.print()

– Outputs text to the screen

System.out.print(―Hello‖);

– There is also System.out.println(), which terminates w/newline

• Can program procedurally:

– Just put the word ―static‖ in front of all functions and global

variables.

4

Variable Declarations

• Format: type variable-name;

• Examples:

 int total;

 float salary;

• Variables may be declared anywhere in the

code, but may not be used until declared.

– Note the declaration of int quotient; in the sample

program.

• This feature allows you to declare variables close to where

they are used, making code more readable.

• However, ―can‖ doesn‘t imply ―should‖—in general,

declarations are often best at top of a block

Hierarchy of Program Elements

• Atom

• Expression

• Statement

• Block

• Method (==Function)

• Class

• File

5

6

Variable Declarations (con‘t)

• When we declare a variable, we tell Java:

– When and where to set aside memory space for

the variable

– How much memory to set aside

– How to interpret the contents of that memory:

the specified data type

– What name we will be referring to that location

by: its identifier

7

Identifiers

Identifier naming rules apply to all variables,
methods, class names, enumerations,
etc.:

• Can only contain letters, digits, and the
underscore symbol

• Must not start with a digit

• Can be of any length

• Are case-sensitive:
– Rate, rate, and RATE are the names of three

different variables.

• Cannot be a keyword, or other reserved

8

Naming Conventions

• Naming conventions are additional rules that

restrict the names of variables to improve

consistency and readability

– Most places of work and education have a set of

naming conventions

– These are not language or compiler enforced

• Java community has stricter, more

homogeneous set of conventions than for other

languages

• We use these as our CMSC 202 standards

9

• Variables, methods, and objects
– Start with a lowercase letter

– Indicate "word" boundaries with an uppercase letter

– Restrict the remaining characters to digits and
lowercase letters

topSpeed bankRate1 timeOfArrival

• Classes
– Start with an uppercase letter

– Otherwise, adhere to the rules above

FirstProgram MyClass String

Naming Conventions in Java

10

Primitive Types

Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

11

Fixed Size for Primitive Types

• Java byte-code runs on the Java Virtual

Machine (JVM).

– Therefore, the size (number of bytes) for each

primitive type is fixed.

– The size is not dependent on the actual

machine/device on which the code executes.

– The machine-specific JVM is responsible for

mapping Java primitive types to native types

on the particular architecture

12

Arithmetic Operators

• Assignment

 =, +=, -=, *=, etc.

• Multiplication, addition, mod, etc.

 *, +, /, %

• Increment and Decrement (pre- and post)

 ++, --

13

Arithmetic Operators

Rules of Operator Precedence

 Operator(s) Precedence & Associativity

 () Evaluated first. If nested

 (embedded), innermost first. If

 on same level, left to right.

 * / % Evaluated second. If there are

 several, evaluated left to right.

 + - Evaluated third. If there are

 several, evaluated left to right.

 = Evaluated last, right to left.

14

Practice With Evaluating Expressions

 Given integer variables a, b, c, d, and e,

where a = 1, b = 2, c = 3, d = 4,

 evaluate the following expressions:

 a + b - c + d

 a * b / c

 1 + a * b % c

 a + d % b - c

 e = b = d + c / b - a

15

A Hand Trace Example

 int answer, value = 4 ;

 Code Value Answer

 4 garbage

 value = value + 1 ;

 value++ ;

 ++value ;

 answer = 2 * value++ ;

 answer = ++value / 2 ;

 value-- ;

 --value ;

 answer = --value * 2 ;

 answer = value-- / 3 ;

16

More Practice

 Given

 int a = 1, b = 2, c = 3, d = 4 ;

 What is the value of this expression?

 ++b / c + a * d++

 What are the new values of a, b, c, and d?

17

Assignment Operators

 = += -= *= /= %=

 Statement Equivalent Statement

 a = a + 2 ; a += 2 ;

 a = a - 3 ; a -= 3 ;

 a = a * 2 ; a *= 2 ;

 a = a / 4 ; a /= 4 ;

 a = a % 2 ; a %= 2 ;

 b = b + (c + 2) ; b += c + 2 ;

 d = d * (e - 5) ; d *= e - 5 ;

18

Arithmetic Operators, Expressions and Promotion

• If different types are combined in an expression, the
―lower‖ type is promoted to the ―higher‖ type, according
to the following ranking:

 byteshortintlongfloatdouble

 char
 (Exception: If the type produced should be byte or short, then the

type produced will actually be an int.)

• So: 15.0 / 2 evaluates to 7.5
 15 / 2.0 evaluates to 7.5

…But: 15 / 2 evaluates to 7
 because integer division truncates

– Make at least one of the operands a floating-point type if the fractional
portion is needed.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

19

Type Casting

• A type cast takes a value of one type and produces a
value of another type with an "equivalent" value.

int n, m;

double ans = n / (double)m;

 OR

double ans = (double)n / m;

 OR

double ans = (double)n / (double)m;

– The type and value of n and m do not change.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

20

Assignment/Arithmetic Review

Arithmetic Operators

http://www.csee.umbc.edu/courses/undergraduate/201/

spring09/misc/arithmetic.shtml

Assignment Operators

http://www.csee.umbc.edu/courses/undergraduate/201/

spring09/misc/assignments.shtml

http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/arithmetic.shtml
http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/arithmetic.shtml
http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/assignments.shtml
http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/assignments.shtml

21

Java Comparison Operators

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

22

Boolean Expressions

• Operators: &&, ||, !

• Boolean expression evaluates to the values true or
false

• Simple Boolean expressions:

time < limit

yourScore == myScore

– Two equal signs (==): equality testing

• Single equal sign (=): assignment

– A Boolean expression does not need to be enclosed
in parentheses, unless it is used in an if-else
statement.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

23

Operator Precedence and

Associativity

 Precedence Associativity

() left to right/inside-out

* / % left to right

+ (addition) - (subtraction) left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

= right to left

Simple Statements

• A statement is a complete, executable piece of

code, similar to a sentence in English.

• Single statement

– An complete expression (with possible

subexpressions), terminated by a ‗;‘

• Block (== compound statement)

– One or more statements, enclosed in matching ―{…}‖

curly-braces

These recursively form parts of more complex

control flow statements
24

25

Java Flow Control

• Java supports the usual flow control constructs

with the same basic syntax as C/C++.

• Decisions

 if, if-else, switch

• Loops

 for, while, do-while

• Boolean expressions

– Java flow control constructs evaluate Boolean

expressions, like C/C++

– Unlike C, the expression must be of boolean type:

• Cannot do: ―if (--c)…‖; must do: ―if (--c != 0)…‖

26

if-else & while Statements

 if (condition1) {
 statement(s)
 } else if (condition2) {
 statement(s)
 }
 . . . /* more else if clauses may be here */
 } else {
 statement(s) /* the default case */
 }

 while (condition) {
 statement(s)
 }

27

Example

 while (children > 0) {

 children = children - 1 ;

 cookies = cookies * 2 ;

 }

28

Good Programming Practice

• Always place braces around the bodies of

the if and else clauses of an if-else

statement.

• Advantages:

– Easier to read

– Will not forget to add the braces if you go back

and add a second statement to the clause

– Less likely to make a semantic error

• Indent the bodies of the if and else clauses

3 to 4 spaces -- be consistent!

29

Example

 …

 factorial = 1;

 while (myNumber > 0)

 factorial *= myNumber;

 --myNumber;

 return factorial;

30

 …

 int i = 1 ; initialization of loop control variable

 // count from 1 to 100

 while (i < 101) { test of loop termination condition

 System.out.println(i) ;

 i = i + 1 ; modification of loop control

 } variable

 return 0 ;

}

The 3 Parts of a Loop

31

The for Loop Repetition

Structure

• The for loop handles details of the counter-controlled
loop ―automatically‖.

• The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

 for (i = 1; i < 101; i = i + 1) {

 initialization modification

 } test

32

When Does a for Loop Initialize, Test and

Modify?

• Just as with a while loop, a for loop

– initializes the loop control variable before

beginning the first loop iteration

– performs the loop termination test before each

iteration of the loop

– modifies the loop control variable at the very

end of each iteration of the loop

• The for loop is easier to write and read for

counter-controlled loops.

33

for Loop Examples

• A for loop that counts from 0 to 9:
 // modify part can be simply ―i++‖

for (i = 0; i < 10; i = i + 1) {

 System.out.println(i) ;

}

• …or we can count backwards by 2‘s :
 // modify part can be ―i -= 2‖

for (i = 10; i > 0; i = i - 2) {

 System.out.println(i) ;

}

34

The do-while Repetition Structure

do {

 statement(s)

} while (condition) ;

• The body of a do-while is ALWAYS

executed at least once. Is this true of a

while loop? What about a for loop?

35

The break & continue Statements

• The break & continue statements can be

used in while, do-while, and for loops to cause

the remaining statements in the body of the loop

to be skipped; then:

– break causes the looping itself to abort, while…

– continue causes the next turn of the loop to start. In

a for loop, the modification step will still be executed.

36

Example break in a for Loop

 …

 int i ;

 for (i = 1; i < 10; i = i + 1) {

 if (i == 5) {

 break;

 }

 System.out.println(i);

 }

 System.out.println(―\nBroke out of loop at i = ― + i);

•OUTPUT:

• 1 2 3 4

•Broke out of loop at i = 5.

37

Example continue in a for Loop

 …

 int i;

 for (i = 1; i < 10; i = i + 1) {

 if (i == 5) {

 continue;

 }

 System.out.println(i);

 }

 System.out.println(―Done‖);

OUTPUT:

 1 2 3 4 6 7 8 9

Done.

38

Problem: continue in while Loop

 // This seems equivalent to for loop

 // in previous slide—but is it??

 …

 int i = 1;

 while (i < 10) {

 if (i == 5) {

 continue;

 }

 System.out.println(i);

 i = i + 1;

 }

 System.out.println(―Done‖);

OUTPUT:

???

The switch Multiple-Selection Structure

switch (integer expression)

{

 case constant1 :

 statement(s)

 break ;

 case constant2 :

 statement(s)

 break ;

 . . .
 default::

 statement(s)

 break ;

}

Notes:

• break and default are

keywords

• If no break, execution flows

through to next case

• If no default, switch might

not do execute anything

39

40

switch Example

switch (day)

{

 case 1: System.out.println (―Monday\n‖) ;

 break ;

 case 2: System.out.println (―Tuesday\n‖) ;

 break ;

 case 3: System.out.println (―Wednesday\n‖) ;

 break ;

 case 4: System.out.println (―Thursday\n‖) ;

 break ;

 case 5: System.out.println (―Friday\n‖) ;

 break ;

 case 0:

 case 6: System.out.println (―Weekend\n‖) ;

 break ;

 default: System.out.println (―Error -- invalid day.\n‖) ;

 break ;

}

41

?: Operator

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

• ?: is the ternary operator

• General form:

 (boolean expression ? true result : false result)

• Examples

 int score = 42;

 int average = 66;

 int x = (score > average ? 22 : 33);

 String s = (score > average ? ― above ― : ― below ―);

 System.out.println(―My score is ― + s + ―average‖);

42

Variable Scope

Variable scope:

• That set of code statements in which the variable
is known to the compiler

• Where it can be referenced in your program.

• Limited to the code block in which it is defined.

– A code block is a set of code enclosed in braces ({ }).

One interesting application of this principle allowed
in Java involves the for loop construct.

43

for-loop index

• Can declare and initialize variables in the heading
of a for loop.

• These variables are local to the for-loop.

• They may be reused in other loops.

 String s = “hello world”;

 int count = 1;

 for (int i = 0; i < s.length(); i++)

 {

 count *= 2;

 }

 //using 'i' here generates a compiler error

44

Named Constants

• No ―mystery‖ values!

• Declare constants as named constants, and use their

name instead

public static final int INCHES_PER_FOOT = 12;

public static final double RATE = 0.14;

– The ―final‖ modifier prevents a value from being

changed inadvertently.

– More about public and static later

– Naming convention for constants

• Use all uppercase letters

• Designate word boundaries with an underscore character

45

Comments
• Line comment

– Begins with the symbols //

– Compiler ignores remainder of the line

– Used for the coder or for a programmer who modifies the code

 if (birthYear > currentYear) // birth year is invalid

 then . . .

• Block comment

– Begins with /* and ends with */

– Compiler ignores anything in between

– Can span several lines

– Provides documentation for the users of the program

 /* File: Date

 Author: Joe Smith

 Date: 9/1/09

 */

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

46

Comments & Named Constants

Copyright © 2008 Pearson Addison-Wesley
All rights reserved

Special Javadoc Comment Form

• Similar to block comment, but:

– Begins with /**

– Not special to Java: considered same as ―/*‖

– Processed by separate Javadoc program that creates
HTML documentation pages from program source

– Known set of embedded tags have special meaning

to Javadoc.

• E.g.: @param, @return

– For an example:

http://download.oracle.com/javase/6/docs/api/java/lan

g/String.html

47

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

48

Comments and Coding Standards

• Check the course website regarding
comment and coding standard
requirements.

http://www.csee.umbc.edu/courses/undergra
duate/202/fall11H/projects/coding-
standards.shtml

http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml
http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml
http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml
http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml

49

The String Class
• No primitive type for strings in Java

• String is a predefined class in the Java language.

– Used to store and process strings

• Objects of type String are made up of strings of
characters within double quotes.

– Any quoted string is a constant of type String.

 "Live long and prosper."

• A variable (object) of type String can be given the value
of a String constant.

 String blessing = “Live long and prosper.“
 String greeting = “Hello”;

 String name = “Bob”;

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

50

String Concatenation

• Use the + operator

String greeting = “Hello”;

String name = “Bob”;

greeting + name is equal to ―HelloBob”

• Any number of strings can be concatenated together.

• When a string is combined with almost any other type of item, the result is a
string

 “The answer is “ + 42 evaluates to

 ―The answer is 42“

• Strings also support the += operator

 String greeting = ”Hello”;

 greeting += “ Bob”; changes greeting to “Hello Bob”

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

51

String Methods

• The String class contains many useful methods (operations) for string-
processing applications.

• Calling a String method:

 String-object-name.method-name (arguments); OR

 variable = String-object-name.method-name (arguments);

• Example

String greeting = “Hello“; //greeting is an object

int count = greeting.length();

System.out.println(“Length is “ + greeting.length());

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

52

Some Methods in the Class String (1 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

53

Some Methods in the Class String (2 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

54

Some Methods in the Class String (3 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

55

Some Methods in the Class String (4 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

56

Escape Sequences

Copyright © 2008 Pearson Addison-Wesley
All rights reserved

• The character following the backslash does not have its usual
meaning.

• It is formed using two symbols, but regarded as a single
character.

57

Pitfall: Using == with Strings
• The equality operator (==) can test the stored values of two values of a primitive type.

 int x = 5, y = 5;

 if (x == y) . . . // returns true

• When applied to two objects, == tests to see if they are stored in the same memory
location. Example:

 String string1 = “hello”;

 String string2 = “hello”;

 if (string1 == string2) . . . // returns false

• To test two strings to see if they have equal values, use the String method
equals, or equalsIgnoreCase.

if (string1.equals(string2)) // returns true

 or

if (string1.equalsIgnoreCase(string2)) // returns true

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Other Pitfalls with Strings

• Be careful with concatenation: associativity and

promotion still applies:

– Consider the following two expressions:
 4 + 2 + ―is the answer to everything‖;

vs.:
 ―The answer to everything is ― + 4 + 2;

• A String is immutable

– There is no way to modify any chars in a String:

• E.g.: ―someString.charAt(x)‖ doesn‘t let you change that char

– But what does ―immutable‖ really mean? Consider:

 String immutable = ―Yes‖;

immutable = ―No‖;

// Why is this allowed? And what of ―+=―?

(See bad example)

58

59

Arrays

• Array: A data structure used to process a
collection of data that is all of the same type.

• An array is declared and created using the new
operator.

BaseType[] ArrayName = new BaseType[size];

• The size may be given
• as a non-negative integer, or

• as an expression that evaluates to a nonnegative integer.

char[] line = new char[80];

double[] reading = new double[count];

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

60

Declaring vs. Creating Arrays

• Example

 double[] score = new double[5];

 or, using two statements:

 double[] score; // declares

 score = new double[5]; // creates

• The 1st statement declares score to be of the array
type double[] (an array of doubles).

• The 2nd statement
– creates an array with five numbered values of type double

– makes the variable score a name for the array

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

61

The length Instance Variable

• An array is considered to be an object.

• Every array has exactly one instance variable
(characteristic) named length.

– When an array is created, the instance variable
length is automatically set equal to its size.

– The value of length cannot be changed (other than by
creating an entirely new array using new).

double[] score = new double[5];

– Given score above, score.length has a value of 5.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

62

Initializing Arrays

• An array can be initialized when it is declared.

• Example:
int[] age = {2, 12, 1};

• Given age above, age.length automatically

has a value of 3.

 System.out.print(“Length is “ + age.length);

prints

Length is 3

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

63

Initializing Arrays

• Using a for loop,

double[] reading = new double[100];

for(int index = 0; index < reading.length; index++)

{

 reading[index] = 42.0;

}

• If the elements of an array are not initialized
explicitly, they will automatically be initialized to the
default value for their base type.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

64

An Array Coding Exercise

• Write a code fragment that finds the

smallest value in an array of integers.

65

Arrays as Parameters

• An array may be a method argument. Example:

 public void doubleElements(double[] a) // a = address

 {

 for (int i = 0; i < a.length; i++) // notice use

 a[i] = a[i]*2; // of a.length

 }

• Given arrays of double as follows:

 double[] a = new double[10];

 double[] b = new double[30];

 the method doubleElements can be invoked as follows:

 doubleElements(a);

 doubleElements(b);

6-65
Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

66

Pitfall: Use of = with Arrays

• An array variable contains the memory
address of the array it names.

• The assignment operator (=) only copies
this memory address.

int a[] = {1, 2, 3};

int b[] = new int[3];

b = a; // b and a are now names for

 // the same array

Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

67

Pitfall: Use of = with Arrays

• A for loop is usually used to make two different

arrays have the same values in each indexed

position.

int i;

int a[] = {1, 2, 3};

int b[] = new int[3];

for (i = 0; (i < a.length) && (i < b.length); i++)

 b[i] = a[i];

– Note that the above code will not make b an exact

copy of a, unless a and b have the same length

Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

68

Pitfall: Use of == with Arrays

• The equality operator (==) only tests two arrays
to see if they are stored in the same memory
location.

(a == b)

is true if a and b reference the same array.

Otherwise, it is false.

• An equalsArray method can be defined to
test arrays for value equality.

– The following method tests two integer arrays to see if
they contain the same integer values.

Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

69

Code to Test for Value Equality

public boolean equalsArray(int[] a, int[] b)

{

 if (a.length == b.length)

 {

 int i = 0;

 boolean elementsMatch = true;

 while (i < a.length && elementsMatch)

 {

 if (a[i] != b[i])

 elementsMatch = false;

 i++;

 }

 return elementsMatch;

 }

 else

 return false;

}

Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

Strings and Arrays Are Objects

• It‘s important to keep in mind that despite

syntactic shortcuts (e.g., ―hello‖ + ―bye‖,

foo[x]), strings and arrays are objects

– They have real methods

– They have constructors, which must be called

to create new instances.

• Otherwise, you just have null references.

70

