Review of Java Basics

CMSC 202H (Honors Section)
John Park

Simple “Procedural” Java

public class MyClass {

static boolean sawNonZero = false;

public static void main (String[] args) {
System.out.print (Y“Hello, world”);

int quotient;

quotient = 3 / 4;
1f (testNonZero (quotient)) {
System.out.print (“"\nQuotient is non-zero\n”);

}
}

static boolean testNonZero (int wvalue) {

1f (value !'= 0) {
sawNonzZero = true;
return true;

} else

return false;

Java Program Basics

All code has to be inside some class definition

— For now, we can think of this in terms of file/module, or
namespace

All programs begin execution at main()
 This is much like in C, but...
* You can have a different main() in every class: pick at runtime

System.out.print()
— Outputs text to the screen
System.out.print("Hello”);
— There is also System.out.printin(), which terminates w/newline
Can program procedurally:

— Just put the word “static” in front of all functions and global
variables.

Variable Declarations

 Format. type variable-name;

« Examples:
Int total;
float salary;

« Variables may be declared anywhere in the
code, but may not be used until declared.

— Note the declaration of int quotient; in the sample
program.

« This feature allows you to declare variables close to where
they are used, making code more readable.

* However, “can” doesn’t imply “should”™—in general,
declarations are often best at top of a block

Hierarchy of Program Elements

Atom

Expression
Statement

Block

Method (==Function)
Class

File

Variable Declarations (con't)

« When we declare a variable, we tell Java:

— When and where to set aside memory space for
the variable

— How much memory to set aside

— How to interpret the contents of that memory:
the specified data type

— What name we will be referring to that location
by: its identifier

|dentifiers

ldentifier naming rules apply to all variables,
methods, class names, enumerations,
etc.:

« Can only contain letters, digits, and the
underscore symbol

* Must not start with a digit
« Can be of any length

« Are case-sensitive:

— Rate, rate, and RATE are the names of three
different variables.

« Cannot be a keyword, or other reserved

Naming Conventions

« Naming conventions are additional rules that
restrict the names of variables to improve
consistency and readability

— Most places of work and education have a set of
naming conventions

— These are not language or compiler enforced

« Java community has stricter, more

homogeneous set of conventions than for other
languages

« We use these as our CMSC 202 standards

Naming Conventions In Java

« Variables, methods, and objects
— Start with a lowercase letter
— Indicate "word" boundaries with an uppercase letter

— Restrict the remaining characters to digits and
lowercase letters

topSpeed bankRatel timeOfArrival

 Classes
— Start with an uppercase letter
— Otherwise, adhere to the rules above

FirstProgram MyClass String

Primitive Types

Primitive Types

boolean trueor false | byte not applicable
char single character 2 bytes all Unicode characters
(Unicode)
byte integer | byte —128 to 127
short integer 2 bytes —32768 t0 32767
int integer 4 bytes —2147483648 to
2147483647
long integer 8 bytes —9223372036854775808 to
9223372036854775807
float floating-point 4 bytes —3.40282347 X 10%3% to
number —1.40239846 X 10 4°
double floating-point 8 bytes +1.76769313486231570 X 1073°® to
number +4.9406564584124654L X 10324
Copyright © 2008 Pearson Addison-Wesley. All rights 10

reserved

Fixed Size for Primitive Types

« Java byte-code runs on the Java Virtual
Machine (JVM).

— Therefore, the size (number of bytes) for each
primitive type is fixed.

— The size is not dependent on the actual
machine/device on which the code executes.

— The machine-specific JVM is responsible for
mapping Java primitive types to native types
on the particular architecture

11

Arithmetic Operators

« Assignment

=, +=, -=, *=, etc.

« Multiplication, addition, mod, etc.

*1 +1/1%

* Increment and Decrement (pre- and post)

++, --

12

Arithmetic Operators
Rules of Operator Precedence

Operator(s) Precedence & Associativity

() Evaluated first. If nested
(embedded), innermost first. If
on same level, left to right.

* | % Evaluated second. If there are
several, evaluated left to right.

+ - Evaluated third. If there are
several, evaluated left to right.

= Evaluated last, right to left.
13

Practice With Evaluating Expressions

Given integer variables a, b, c, d, and e,
wherea=1,b=2,c=3,d=4,

evaluate the following expressions:

at+tb-c+d
a*b/c
l1+a*b%c
at+t+d%b-c
e=b=d+c/b-a

14

A Hand Trace Example

Int answer, value = 4 :

Code Value Answer
4 garbage

value =value + 1 ;

value++ ;

++value ;

answer = 2 * value++ ;
answer = ++value / 2 ;
value-- ;

--value ;

answer = --value * 2 ;
answer = value--/ 3 ;

More Practice

Given
inta=1,b=2,¢c=3,d=4;

What is the value of this expression?

++b/c+a*d++

What are the new values of a, b, ¢, and d?

16

Assignment Operators

— +=-= *— [= 0=
Statement Equivalent Statement
a=-at?2; a+t=2;
a=-a-3; a-=3;
a=-a*2; ar*=2;:
a=al4; al=4:
a=a%?2; a %= 2 ;
b=b+(c+2); b+=c+2;

d=d*(e-5); d*=e-5;

17

Arithmetic Operators, Expressions and Promotion

« If different types are combined in an expression, the
“lower” type is promoted to the “higher” type, according
to the following ranking:

byte—>short—>int—>long—>float—>double

char A

(Exception: If the type produced should be byte or short, then the
type produced will actually be an int.)

e So: 15.0 / 2 evaluatesto 7.5
15 / 2.0 evaluatesto 7.5

..But: 15 / 2 evaluates to 7
because integer division truncates

— Make at least one of the operands a floating-point type if the fractional
portion is needed.

Copyright © 2008 Pearson Addison-Wesley. 18
All rights reserved

 Atype cast takes a value of one type and produces a

Type Casting

value of another type with an "equivalent” value.

int n,
double

double

double

m,
ans = n / (double)m;
OR
ans = (double)n / m;
OR
ans = (double)n / (double)m;

— The type and value of n and m do not change.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

19

Assignment/Arithmetic Review

Arithmetic Operators

http://www.csee.umbc.edu/courses/undergraduate/201/
spring09/misc/arithmetic.shtml

Assignment Operators

http://www.csee.umbc.edu/courses/undergraduate/201/
spring09/misc/assignments.shtml

20

http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/arithmetic.shtml
http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/arithmetic.shtml
http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/assignments.shtml
http://www.csee.umbc.edu/courses/undergraduate/201/spring09/misc/assignments.shtml

Java Comparison Operators

Display 3.3 Java Comparison Operators

MATH NAME JAVA JAVA EXAMPLES
NOTATION NOTATION
= Equal to == X + 7 == 2%y
answer == 'y'
Not equal to l= score != 0
answer ="y’
> Greater than > time > limit
= Greater than or equal to >= age >= 21
< Less than < pressure < max
< Less than or equal to <= time <= limit

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Boolean Expressions

Operators:. &&, ||, !

Boolean expression evaluates to the values true or
false

Simple Boolean expressions:

time < limit
yourScore == myScore

— Two equal signs (==). equality testing
 Single equal sign (=): assignment

— A Boolean expression does not need to be enclosed
In parentheses, unless itisused in an if-else
statement.

Copyright © 2008 Pearson Addison-Wesley.

) 22
All rights reserved

Operator Precedence and
Associativity

Precedence Associativity
() left to right/inside-out
* | % left to right
+ (addition) - (subtraction) left to right
< <= > >= left to right
== I= left to right
&& left to right
| left to right

= right to left

Simple Statements

« A statement is a complete, executable piece of
code, similar to a sentence in English.
« Single statement

— An complete expression (with possible
subexpressions), terminated by a ‘;’
* Block (== compound statement)

— One or more statements, enclosed in matching “{...}"
curly-braces

These recursively form parts of more complex
control flow statements

24

Java Flow Control

Java supports the usual flow control constructs
with the same basic syntax as C/C++.

Decisions
If, iIf-else, switch

Loops
for, while, do-while
Boolean expressions

— Java flow control constructs evaluate Boolean
expressions, like C/C++

— Unlike C, the expression must be of boolean type:

« Cannot do: “if (--c)...”; must do: “if (--c 1= 0)...”
25

If-else & while Statements

If (condition,) {

statement(s)
} else if (condition,) {

statement(s)
}

. [* more else if clauses may be here */

} else {

statement(s) /* the default case */
}

while (condition) {
statement(s)
}

26

Example

while (children>0) {
children = children - 1 :

cookies = cookies * 2 ;

27

Good Programming Practice

* Always place braces around the bodies of
the If and else clauses of an if-else
statement.

« Advantages:
— Easier to read

— Will not forget to add the braces if you go back
and add a second statement to the clause

— Less likely to make a semantic error

 Indent the bodies of the If and else clauses
3 to 4 spaces -- be consistent!

28

Example

factorial = 1;

while (myNumber > 0)
factorial *= myNumber;
--myNumber;

return factorial;

29

The 3 Parts of a Loop

inti=1———_ . 1 initialization of loop control variable

// count from 1 to 100
while (1<101){ —=—— ——— test of loop termination condition
System.out.printin(i) ;

I1=i+1; ——————— modification of loop control

} variable
return O ;

30

The for Loop Repetition
Structure

« The for loop handles details of the counter-controlled
loop “automatically”.

« The Initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for (i=1;i<101;i=i+1){

Initialization modification
} test

31

When Does a for Loop Initialize, Test and
Modify?
« Just as with a while loop, a for loop

— Initializes the loop control variable before
beginning the first loop iteration

— performs the loop termination test before each
iteration of the loop

— modifies the loop control variable at the very
end of each iteration of the loop

* The for loop Is easier to write and read for
counter-controlled loops.

32

for Loop Examples

« A for loop that counts from O to 9:

// modify part can be simply “i++”

for (1 =0; 1< 10; 1 =1 + 1) {
System.out.println(1) ;

}

e ...0r we can count backwards by 2’s :

// modify part can be “i -= 2”
for (1 =10; 1 > 0; 1 =1 - 2) {
System.out.println(1) ;

}

33

The do-while Repetition Structure

do {
statement(s)
} while (condition) ;

* The body of a do-while iIs ALWAYS
executed at least once. Is this true of a
while loop? What about a for loop?

34

The break & continue Statements

 The break & continue statements can be
used in while, do-while, and for loops to cause
the remaining statements in the body of the loop
to be skipped; then:
— break causes the looping itself to abort, while...

— continue causes the next turn of the loop to start. In
a for loop, the modification step will still be executed.

35

Example break in a for Loop

int 1 ;

*OUTPUT:

for (1 = 1; 1 < 10; i =1 + 1) {
if (i == 5) 1234

break;

}

*Broke out of loop ati =5.
System.out.println (i) ;

}

System.out.println (“"\nBroke out of loop at 1 = + 1i);

36

Example continue in a for Loop

int i OUTPUT:
for (i = 1; 1 < 10; i =1i + 1) {
if (1 == 5) { 12346789
continue;
} Done.

System.out.println(i);
}

System.out.println (“Done”) ;

37

Problem: continue in while Loop

// This seems equivalent to for loop

// in previous slide—but is it?? OUTPUT:
int 1 = 1; ?7?7?
while (i < 10) {

if (1 == 5) |

continue;

}
System.out.println(i);
1 =1+ 1;

}

System.out.println (“Done”) ;

38

The switch Multiple-Selection Structure

switch (integer expression)
{
case constant, :
statement(s)
break ;
case constant, :
statement(s)
break ;

default::
statement(s)
break ;

Notes:

e break anddefault are
keywords

* If no break, execution flows
through to next case

 Ifno default, switch might
not do execute anything

39

switch Example

switch (day)

{

case 1:

case 2:

case 3:

case 4:

case 5:

case O:
case 6:

default:

System.out.printin (“Monday\n”) ;
break ;

System.out.printin (“Tuesday\n”) ;
break ;

System.out.printin (“Wednesday\n”) ;
break ;

System.out.printin (“Thursday\n”) ;
break ;

System.out.printin (“Friday\n”) ;
break ;

System.out.println (“Weekend\n”) ;
break ;

System.out.println (“Error -- invalid day.\n”) ;
break ;

40

?. Operator

e ?:.1sthe ternary operator
* General form:

(boolean expression ? true result : false result)
 Examples

INt score = 42;
Int average = 66;

Int X = (score > average ? 22 : 33);

String s = (score > average ? “ above “ : “ below “);
System.out.printin(“My score is “ + s + "average”);

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

41

Variable Scope

Variable scope:

 That set of code statements in which the variable
IS known to the compiler

* Where it can be referenced in your program.

 Limited to the code block in which it is defined.

— A code block is a set of code enclosed in braces ({ }).

One interesting application of this principle allowed
In Java involves the for loop construct.

42

for-loop index

« Can declare and initialize variables in the heading
of a for loop.

* These variables are local to the for-loop.
« They may be reused in other loops.
String s = “hello world”;

int count = 1;
for (int i = 0; i < s.length(),; i++)

{

count *= 2;

}

//using 'i' here generates a compiler error

43

Named Constants

* No “mystery” values!

 Declare constants as named constants, and use their
name instead

public static final int INCHES PER FOOT = 12;
public static final double RATE = 0.14;

— The “£inal” modifier prevents a value from being
changed inadvertently.

— More about public and static later

— Naming convention for constants
» Use all uppercase letters
« Designate word boundaries with an underscore character

44

Comments

 Line comment
— Begins with the symbols //
— Compiler ignores remainder of the line
— Used for the coder or for a programmer who modifies the code

if (birthYear > currentYear) // birth year is invalid
then . ..

 Block comment
— Begins with /* and ends with */
— Compiler ignores anything in between
— Can span several lines
— Provides documentation for the users of the program

[* File: Date
Author: Joe Smith
Date: 9/1/09

*/

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Comments & Named Constants

Display 1.8 Comments and a Named Constant

(o v « BN I T ¥, Y N PR T LW

109
11
12
13

14
15
16
17
18
19
20
21

=ul

.-"'r deke

Program to show interest on a sample account balance.
Author: Jane . Programmer.

E-mail Address: janeq@somemachine.etc.etc.

Last Changed: September 21, 2004.

e g
J

public class ShowInterest

{
public static final double INTEREST_RATE = 2.5;
public static wvoid main(S5tring[] args)
i
double balance = 1600:;
double interest; //as a percent
interest = balance * (INTEREST_RATE/100.0) ;
System.out.println{”0On a balance of %" + balance);
System.out.println{"you will earn interest of %"
+ 1lnterest);
System.out.println("ALL in just one short wear.");
¥ A
Although it weorld mes
HJ,Llﬂi?':[rvv=ﬂlWaI-dul?ﬂ ds clear, it ig
} egal to p dace the :-]'[:.I:il-l;.ril.]_,.l af

INTEREST_RATEhnnnnsmed

SAMPLE DIALOGUE

On a balance of $100.0
you will earn interest of $2.5
All in just one short year.

Copyright © 2008 Pearson Addison-Wesley

All rights reserved

16

Special Javadoc Comment Form

« Similar to block comment, but:
— Begins with /**
— Not special to Java: considered same as “/*”

— Processed by separate Javadoc program that creates
HTML documentation pages from program source

— Known set of embedded tags have special meaning
to Javadoc.

* E.g.: @param, (@return

— For an example:
http://download.oracle.com/javase/6/docs/api/javallan
q/String.html

a7

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Comments and Coding Standards

» Check the course website regarding
comment and coding standard
requirements.

http://www.csee.umbc.edu/courses/undergra
duate/202/fall11H/projects/coding-
standards.shtml

48

http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml
http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml
http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml
http://www.csee.umbc.edu/courses/undergraduate/202/fall11H/projects/coding-standards.shtml

The string Class

* No primitive type for strings in Java
« Stringis a predefined class in the Java language.

— Used to store and process strings

* Objects of type String are made up of strings of
characters within double quotes.

— Any quoted string is a constant of type String.

"Live long and prosper."

« A variable (object) of type String can be given the value
of a String constant.

String blessing = “Live long and prosper."
String greeting = “Hello”;
String name = “Bob”;

Copyright © 2008 Pearson Addison-Wesley. 49
All rights reserved

String Concatenation

Use the + operator

String greeting = “Hello”;
String name = “Bob”;
greeting + name IS equalto “HelloBob”

Any number of strings can be concatenated together.

When a string is combined with almost any other type of item, the result is a
string

“The answer is “ + 42 evaluatesto
“The answer is 42"
Strings also support the += operator

String greeting= "“Hello”;
greeting += “ Bob”; changes greeting t0 “Hello Bob”

Copyright © 2008 Pearson Addison-Wesley. 50
All rights reserved

String Methods

The String class contains many useful methods (operations) for string-
processing applications.

Calling a String method:

String-object-name.method-name (arguments); OR

variable = String-object-name.method-name (arguments);

Example

String greeting = “Hello"“; //greeting is an object
int count = greeting.length() ;

System.out.println(“Length is “ + greeting.length())

Copyright © 2008 Pearson Addison-Wesley. 51
All rights reserved

Some Methods in the Class String (1 of 4)

Some Methods in the Class String

int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.length() returns 6.

boolean equals(Other_String)

Returns true if the calling object string and the Other_String are equal. Otherwise, returns false.

EXAMPLE

After program executes String greeting = "Hello";
greeting.equals("Hello") returms true
greeting.equals("Good-Bye'") returns false
greeting.equals("hello") returns false

Note that case matters. "Hello" and "hello" are not equal because one starts with an uppercase
letter and the other starts with a lowercase letter.

(continued)
Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

Some Methods in the Class String (2 of 4)

Some Methods in the Class String

boolean equalsIgnoreCase(Other_String)

Returns true if the calling object string and the Other_String are equal, considering uppercase and low-
ercase versions of a letter to be the same. Otherwise, returns false.

EXAMPLE

After program executes String name = "mary!";
greeting.equalsIgnoreCase("Mary!") returns true

String tolLowerCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to lowercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toLowerCase() returns "hi mary!".

(continued)

Copyright © 2008 Pearson Addison-Wesley. 53
All rights reserved

Some Methods in the Class String (3 of 4)

Display 1., Some Methods in the Class String

String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to uppercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() returms "HI MARY!".

String trim()

Returns a string with the same characters as the calling object string, but with leading and trailing white
space removed. Whitespace characters are the characters that print as white space on paper, such as the
blank (space) character, the tab character, and the new-line character '\n".

EXAMPLE

After program executes String pause = Hmm :
pause.trim() returns "Hmm".

(continued)

Copyright © 2008 Pearson Addison-Wesley. 54
All rights reserved

Some Methods in the Class String (4 of 4)

Display 1.4, Some Methods in the Class String

char charAt(Position)

Returns the character in the calling object string at the Position. Positions are counted o, 1, 2, etc.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1) returns '

e'.
String substring(Start)

Returns the substring of the calling object string starting from Start through to the end of the calling
object. Positions are counted o, 1, 2, etc. Be sure to notice that the character at position Startis included in
the value returned.

EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2) returns "cdefG".

(continued)

Copyright © 2008 Pearson Addison-Wesley. 55
All rights reserved

Escape Sequences

Display 1.6 Escape Sequences

\" Double quote.

\" Single quote.

\\ Backslash.

\n New line. Go to the beginning of the next line.

\r Carriage return. Go to the beginning of the current line.
\t Tab. White space up to the next tab stop.

« The character following the backslash does not have its usual
meaning.

« Itis formed using two symbols, but regarded as a single
character.

Copyright © 2008 Pearson Addison-Wesley 56
All rights reserved

Pitfall: Using == with Strings
The equality operator (==) can test the stored values of two values of a primitive type.

int x =5, y =5;
if (x==vy) . . . // returns true

When applied to two objects, == tests to see if they are stored in the same memory
location. Example:

String stringl = “hello”;
String string2 = “hello”;
if (stringl == string2) . . . // returns false

To test two strings to see if they have equal values, use the String method
equals, Or equalsIgnoreCase.

if (stringl.equals(string2)) // returns true
or
if (stringl.equalsIgnoreCase (string2)) // returns true
Copyright © 2008 Pearson Addison-Wesley. 57

All rights reserved

Other Pitfalls with Strings

« Be careful with concatenation: associativity and
promotion still applies:

— Consider the following two expressions:
4 + 2 + Y“is the answer to everything”;

VS..
“The answer to everything is “ + 4 + 2;

« A String Is immutable

— There is no way to modify any chars in a String:
« E.g.: “someString.charAt(x)” doesn'’t let you change that char
— But what does “immutable” really mean? Consider:

String 1mmutable = “Yes”;
immutable = “No”;
// Why is this allowed? And what of “+=%?

(See bad example)

58

Arrays

Array: A data structure used to process a
collection of data that is all of the same type.

An array Is declared and created using the new
operator.

BaseType[] ArrayName = new BaseType[size];

The size may be given

* as a non-negative integer, or
* as an expression that evaluates to a nonnegative integer.

char[] line = new char[80];
double[] reading = new double[count];

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

59

Declaring vs. Creating Arrays

 Example

double[] score = new double[5];

or, using two statements:

double[] score; // declares
score = new double[5]; // creates

 The 1st statement declares score to be of the array
type double[] (an array of doubles).

 The 2nd statement
— creates an array with five numbered values of type double

— makes the variable score a name for the array

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

60

The 1length Instance Variable

 An array is considered to be an object.

« Every array has exactly one instance variable
(characteristic) named length.

— When an array is created, the instance variable
length Is automatically set equal to its size.

— The value of 1length cannot be changed (other than by
creating an entirely new array using new).

double|[] score = new double[5];

— Given score above, score.length has a value of 5.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

61

Initializing Arrays

* An array can be initialized when it is declared.

« Example:
int[] age = {2, 12, 1};

« Glven age above, age . length automatically
has a value of 3.

System.out.print (“Length is “ + age.length);
prints
Length is 3

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

62

Initializing Arrays

* Using a for loop,

double[] reading = new double[100];
for (int index = 0; index < reading.length; index++)

{

reading[index]

42 .0;

 |If the elements of an array are not initialized

explicitly, they will automatically be initialized to the
default value for their base type.

Copyright © 2008 Pearson Addison-Wesley. 63
All rights reserved

An Array Coding Exercise

* Write a code fragment that finds the
smallest value Iin an array of integers.

64

Arrays as Parameters

* An array may be a method argument. Example:

public void doubleElements (double[] a) // a = address

{
for (int i = 0; i < a.length; i++) // notice use

a[i] = a[i]l*2; // of a.length
}
« Given arrays of double as follows:
double[] a = new double[1l0];
double[] b = new double[30];

the method doubleElements can be invoked as follows:

doubleElements (a) ;
doubleElements (b) ;

Copyright © 2008 Pearson Addison-Wesley. All rights 5 66%
reserved i

Pitfall: Use of = with Arrays

* An array variable contains the memory
address of the array it names.

* The assignment operator (=) only copies
this memory address.

int a[] -— {1/ 2/ 3};
int b[] = new int[3];

b =a; // b and a are now names for
// the same array

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Pitfall: Use of = with Arrays

* A for loop is usually used to make two different

arrays have the same values in each indexed
position.

int i;

int a[] = {1, 2, 3};

int b[] = new int[3];

for (1 = 0; (1 < a.length) && (i < b.length); i++)
b[i] = a[i];

— Note that the above code will not make b an exact
copy of a, unless a and b have the same length

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Pitfall: Use of == with Arrays

* The equality operator (==) only tests two arrays
to see if they are stored in the same memory
location.

(a == b)

IS true If a and b reference the same array.
Otherwise, it is false.

* An equalsArray method can be defined to
test arrays for value equality.

— The following method tests two integer arrays to see if
they contain the same integer values.

68

Code to Test for Value Equality

public boolean equalsArray(int[] a, int[] b)
{
if (a.length == b.length)
{
int 1 = 0;
boolean elementsMatch = true;
while (i < a.length && elementsMatch)
{
if (a[i] '= b[i])
elementsMatch = false;
i++;
}
return elementsMatch;
}
else
return false;

Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

69

Strings and Arrays Are Objects

* |It's important to keep in mind that despite
syntactic shortcuts (e.g., “hello” + “bye”,
foo[x]), strings and arrays are objects
— They have real methods

— They have constructors, which must be called
to create new instances.

« Otherwise, you just have null references.

70

