
CMSC 202

Interfaces

10/11 2

Classes and Methods

 When a class defines its methods as public, it
describes how the class user interacts with the
method.

 These public methods form the class’ interface .

 An abstract class contains one or more methods
with only an interface – no method body is provided.

 Java allows us to take this concept one step further.

10/11 3

Interfaces
 An interface is something like an extreme

abstract class.

 All of the methods in an interface are abstract
– they have no implementations.

 An interface

 has no instance variables.

 Only defines methods.

 is NOT a class.

 is a type that can be satisfied by any class that
implements the interface

10/11 4

Interfaces

 The syntax for defining an interface is similar to that of defining a
class
 Except the word interface is used in place of class

 An interface specifies a set of methods that any class that
implements the interface must have
 It contains method headings (and optionally static final constant

definitions) only

 It contains no instance variables nor any complete method
definitions

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 5

Interfaces

 An interface and all of its method headings should be declared
public

 They cannot be given private, protected, or package access

 When a class implements an interface, it must make all the
methods in the interface public.

 Because an interface is a type, a method may be written with a
parameter of an interface type

 That parameter will accept as an argument any class that
implements the interface

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 6

Implementing an Interface

 To create a class that implements all the

methods defined in an interface, use the

keyword implements.

 Whereas interface defines the headings for

methods that must be defined, a class that

implements the interface defines how the

methods work.

10/11 7

The Animal Interface

public interface Animal

{

 public void eat();

}

Yes, animals do more than eat, but we’re trying

to make this a simple example.

10/11 8

Interfaces

 To implement an interface, a concrete class must do
two things:

1. It must include the phrase

implements Interface_Name

at the start of the class definition

– If more than one interface is implemented,
each is listed, separated by commas

2. The class must implement all the method
headings listed in the definition(s) of the
interface(s)

Copyright © 2008 Pearson Addison-Wesley.

 All rights reserved

10/11 9

Implementing Animal

// Lion and Snake implement the required eat() method

public class Lion implements Animal

{

 public void eat()

 { System.out.println("Lions Devour"); }

}

public class Snake implements Animal

{

 public void eat()

 { System.out.println("Snakes swallow whole"); }

}

10/11 10

Implementing Animal

// Dog implements the required eat() method and has

// some of its own methods and instance variables

public class Dog implements Animal {

 private String name;

 Dog(String newName)

 {name = newName;}

 public void eat()

 {System.out.println("Dog chews a bone");}

}

// Poodle is derived from Dog, so it inherits eat()

// Adds a method of its own

public class Poodle extends Dog

{

 Poodle(String name)

 { super(name); } // call Dog constructor

 public String toString()

 { return "Poodle"; }

}

Implementing Animal
// Using classes that implement Animal

public class Jungle

{

 public static void feed(Animal a)

 { a.eat(); }

 public static void main(String[] args){

 Animal[] animals = {

 new Lion(),

 new Poodle("Fluffy“),

 new Dog("Max“),

 new Snake()

 };

 for (int i = 0; i < animals.length; i++)

 feed(animals[i]);

 }

}

// --- Output

Lions Devour

Dog chews a bone

Dog chews a bone

Snakes swallow whole

10/11 11

10/11 12

Extending an Interface

 An new interface can add method definitions to an

existing interface by extending the old

interface TiredAnimal extends Animal

{

 public void sleep();

}

The TiredAnimal interface includes both eat() and

sleep();

10/11 13

Interface Semantics Are Not Enforced

 When a class implements an interface, the compiler and run-time
system check the syntax of the interface and its implementation
 However, neither checks that the body of an interface is

consistent with its intended meaning

 Required semantics for an interface are normally added to the
documentation for an interface
 It then becomes the responsibility of each programmer

implementing the interface to follow the semantics

 If the method body does not satisfy the specified semantics, then
software written for classes that implement the interface may not
work correctly

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 14

The Comparable Interface

 The Comparable interface is in the java.lang
package, and so is automatically available to any
program

 It has only the following method heading that must
be implemented (note the Object parameter)
public int compareTo(Object other);

 It is the programmer's responsibility to follow the
semantics of the Comparable interface when
implementing it

 When implementing compareTo, you would of
course overload it by using an appropriate
parameter type

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/11 15

The Comparable Interface Semantics

 The method compareTo must return

 A negative number if the calling object "comes before" the
parameter other

 A zero if the calling object "equals" the parameter other

 A positive number if the calling object "comes after" the
parameter other

 If the parameter other is not of the same type as
the class being defined, then a
ClassCastException should be thrown

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 16

The Comparable Interface Semantics

 Almost any reasonable notion of "comes

before" is acceptable

 In particular, all of the standard less-than relations

on numbers and lexicographic ordering on strings

are suitable

 The relationship "comes after" is just the

reverse of "comes before"

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 17

compareTo for Person

public class Person implements Comparable

{

 private String name;

 ...

 public int compareTo(Object obj)

 {

 Person p = (Person)obj;

 return name.compareTo(p.name);

 }

}

If obj is not a Person object a

ClassCastException

 will be thrown

Comparing the names using

String’s compareTo method

10/11 18

Using Comparable
public class NumTests {

 // find the smallest Integer in an array

 // Integer (implements Comparable)

 public static void findSmallest(Integer[] values) {

 int index = 0; // index of smallest value

 for (int i = 1; i < values.length; i++)

 {

 if (values[i].compareTo(values[index]) < 0)

 index = i;

 }

 System.out.println("Index of smallest value is “ + index);

 }

10/11 19

Using Comparable
// prints the index of the smallest Integer in an array

// Note use of Integer, not int

public class Test{

 public static void main(String[] args)

 {

 Integer[] values = {

 new Integer(144), new Integer(200), new Integer(99),
 new Integer(42), new Integer(132) };

 NumTests.findSmallest(values);

 }

}

 But what if we wanted to operate on Floats, or
Strings, or…

 Power comes from the fact that interfaces are also
types

10/11 20

Using Comparable
public class NumTests {

 // find the smallest Integer in an array

 // Integer (implements Comparable)

 public static void findSmallest(Integer[] values) {

 int index = 0; // index of smallest value

 for (int i = 1; i < values.length; i++)

 {

 if (values[i].compareTo(values[index]) < 0)

 index = i;

 }

 System.out.println("Index of smallest value is “ + index);

 }

10/11 21

Using Comparable
public class NumTests {

 // find the smallest thing in an array

 // Comparable is a type!

 public static void findSmallest(Comparable[] values) {

 int index = 0; // index of smallest value

 for (int i = 1; i < values.length; i++)

 {

 if (values[i].compareTo(values[index]) < 0)

 index = i;

 }

 System.out.println("Index of smallest value is “ + index);

 }

10/11 22

Implementing Multiple Interfaces
 Recall the Animal interface from earlier
public interface Animal

{

 public void eat();

}

 Define the Cat interface
public interface Cat

{

 void purr(); // public by default;

}

// since a Lion is an Animal and a Cat, Lion may wish

// to implement both interfaces

public class Lion implements Animal, Cat

{

 public void eat() {System.out.println(“Big Gulps”);}

 public void purr() {System.out.println(“ROOOAAAR!”);}

}

Just separate the

Interface names with a

comma

10/11 23

Inconsistent Interfaces

 In Java, a class can have only one base class
 This prevents any inconsistencies arising from different

definitions having the same method heading

 In addition, a class may implement any number of
interfaces
 Since interfaces do not have method bodies, the above

problem cannot arise

 However, there are other types of inconsistencies that can
arise

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 24

Inconsistent Interfaces

 When a class implements two interfaces:
 Inconsistency will occur if the interfaces contain methods

with the same name but different return types

 If a class definition implements two inconsistent
interfaces, then that is an error, and the class
definition is illegal

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

