
CMSC 202

Interfaces

10/11 2

Classes and Methods

 When a class defines its methods as public, it
describes how the class user interacts with the
method.

 These public methods form the class’ interface .

 An abstract class contains one or more methods
with only an interface – no method body is provided.

 Java allows us to take this concept one step further.

10/11 3

Interfaces
 An interface is something like an extreme

abstract class.

 All of the methods in an interface are abstract
– they have no implementations.

 An interface

 has no instance variables.

 Only defines methods.

 is NOT a class.

 is a type that can be satisfied by any class that
implements the interface

10/11 4

Interfaces

 The syntax for defining an interface is similar to that of defining a
class
 Except the word interface is used in place of class

 An interface specifies a set of methods that any class that
implements the interface must have
 It contains method headings (and optionally static final constant

definitions) only

 It contains no instance variables nor any complete method
definitions

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 5

Interfaces

 An interface and all of its method headings should be declared
public

 They cannot be given private, protected, or package access

 When a class implements an interface, it must make all the
methods in the interface public.

 Because an interface is a type, a method may be written with a
parameter of an interface type

 That parameter will accept as an argument any class that
implements the interface

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 6

Implementing an Interface

 To create a class that implements all the

methods defined in an interface, use the

keyword implements.

 Whereas interface defines the headings for

methods that must be defined, a class that

implements the interface defines how the

methods work.

10/11 7

The Animal Interface

public interface Animal

{

 public void eat();

}

Yes, animals do more than eat, but we’re trying

to make this a simple example.

10/11 8

Interfaces

 To implement an interface, a concrete class must do
two things:

1. It must include the phrase

implements Interface_Name

at the start of the class definition

– If more than one interface is implemented,
each is listed, separated by commas

2. The class must implement all the method
headings listed in the definition(s) of the
interface(s)

Copyright © 2008 Pearson Addison-Wesley.

 All rights reserved

10/11 9

Implementing Animal

// Lion and Snake implement the required eat() method

public class Lion implements Animal

{

 public void eat()

 { System.out.println("Lions Devour"); }

}

public class Snake implements Animal

{

 public void eat()

 { System.out.println("Snakes swallow whole"); }

}

10/11 10

Implementing Animal

// Dog implements the required eat() method and has

// some of its own methods and instance variables

public class Dog implements Animal {

 private String name;

 Dog(String newName)

 {name = newName;}

 public void eat()

 {System.out.println("Dog chews a bone");}

}

// Poodle is derived from Dog, so it inherits eat()

// Adds a method of its own

public class Poodle extends Dog

{

 Poodle(String name)

 { super(name); } // call Dog constructor

 public String toString()

 { return "Poodle"; }

}

Implementing Animal
// Using classes that implement Animal

public class Jungle

{

 public static void feed(Animal a)

 { a.eat(); }

 public static void main(String[] args){

 Animal[] animals = {

 new Lion(),

 new Poodle("Fluffy“),

 new Dog("Max“),

 new Snake()

 };

 for (int i = 0; i < animals.length; i++)

 feed(animals[i]);

 }

}

// --- Output

Lions Devour

Dog chews a bone

Dog chews a bone

Snakes swallow whole

10/11 11

10/11 12

Extending an Interface

 An new interface can add method definitions to an

existing interface by extending the old

interface TiredAnimal extends Animal

{

 public void sleep();

}

The TiredAnimal interface includes both eat() and

sleep();

10/11 13

Interface Semantics Are Not Enforced

 When a class implements an interface, the compiler and run-time
system check the syntax of the interface and its implementation
 However, neither checks that the body of an interface is

consistent with its intended meaning

 Required semantics for an interface are normally added to the
documentation for an interface
 It then becomes the responsibility of each programmer

implementing the interface to follow the semantics

 If the method body does not satisfy the specified semantics, then
software written for classes that implement the interface may not
work correctly

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 14

The Comparable Interface

 The Comparable interface is in the java.lang
package, and so is automatically available to any
program

 It has only the following method heading that must
be implemented (note the Object parameter)
public int compareTo(Object other);

 It is the programmer's responsibility to follow the
semantics of the Comparable interface when
implementing it

 When implementing compareTo, you would of
course overload it by using an appropriate
parameter type

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/11 15

The Comparable Interface Semantics

 The method compareTo must return

 A negative number if the calling object "comes before" the
parameter other

 A zero if the calling object "equals" the parameter other

 A positive number if the calling object "comes after" the
parameter other

 If the parameter other is not of the same type as
the class being defined, then a
ClassCastException should be thrown

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 16

The Comparable Interface Semantics

 Almost any reasonable notion of "comes

before" is acceptable

 In particular, all of the standard less-than relations

on numbers and lexicographic ordering on strings

are suitable

 The relationship "comes after" is just the

reverse of "comes before"

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 17

compareTo for Person

public class Person implements Comparable

{

 private String name;

 ...

 public int compareTo(Object obj)

 {

 Person p = (Person)obj;

 return name.compareTo(p.name);

 }

}

If obj is not a Person object a

ClassCastException

 will be thrown

Comparing the names using

String’s compareTo method

10/11 18

Using Comparable
public class NumTests {

 // find the smallest Integer in an array

 // Integer (implements Comparable)

 public static void findSmallest(Integer[] values) {

 int index = 0; // index of smallest value

 for (int i = 1; i < values.length; i++)

 {

 if (values[i].compareTo(values[index]) < 0)

 index = i;

 }

 System.out.println("Index of smallest value is “ + index);

 }

10/11 19

Using Comparable
// prints the index of the smallest Integer in an array

// Note use of Integer, not int

public class Test{

 public static void main(String[] args)

 {

 Integer[] values = {

 new Integer(144), new Integer(200), new Integer(99),
 new Integer(42), new Integer(132) };

 NumTests.findSmallest(values);

 }

}

 But what if we wanted to operate on Floats, or
Strings, or…

 Power comes from the fact that interfaces are also
types

10/11 20

Using Comparable
public class NumTests {

 // find the smallest Integer in an array

 // Integer (implements Comparable)

 public static void findSmallest(Integer[] values) {

 int index = 0; // index of smallest value

 for (int i = 1; i < values.length; i++)

 {

 if (values[i].compareTo(values[index]) < 0)

 index = i;

 }

 System.out.println("Index of smallest value is “ + index);

 }

10/11 21

Using Comparable
public class NumTests {

 // find the smallest thing in an array

 // Comparable is a type!

 public static void findSmallest(Comparable[] values) {

 int index = 0; // index of smallest value

 for (int i = 1; i < values.length; i++)

 {

 if (values[i].compareTo(values[index]) < 0)

 index = i;

 }

 System.out.println("Index of smallest value is “ + index);

 }

10/11 22

Implementing Multiple Interfaces
 Recall the Animal interface from earlier
public interface Animal

{

 public void eat();

}

 Define the Cat interface
public interface Cat

{

 void purr(); // public by default;

}

// since a Lion is an Animal and a Cat, Lion may wish

// to implement both interfaces

public class Lion implements Animal, Cat

{

 public void eat() {System.out.println(“Big Gulps”);}

 public void purr() {System.out.println(“ROOOAAAR!”);}

}

Just separate the

Interface names with a

comma

10/11 23

Inconsistent Interfaces

 In Java, a class can have only one base class
 This prevents any inconsistencies arising from different

definitions having the same method heading

 In addition, a class may implement any number of
interfaces
 Since interfaces do not have method bodies, the above

problem cannot arise

 However, there are other types of inconsistencies that can
arise

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/11 24

Inconsistent Interfaces

 When a class implements two interfaces:
 Inconsistency will occur if the interfaces contain methods

with the same name but different return types

 If a class definition implements two inconsistent
interfaces, then that is an error, and the class
definition is illegal

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

