CMSC 202

Interfaces

Classes and Methods

e When a class defines its methods as public, it
describes how the class user interacts with the
method.

e These public methods form the class’ interface .

e An abstract class contains one or more methods
with only an interface — no method body is provided.

e Java allows us to take this concept one step further.

10/11 2

Interfaces
e An Iinterface Is something like an extreme

abstract class.

e All of th

e methods in an interface are abstract

— they have no implementations.

e An Interface
has no instance variables.

Only C
IS NO”

efines methods.
" a class.

IS a type that can be satisfied by any class that
Implements the interface

10/11

Interfaces .

e The syntax for defining an interface is similar to that of defining a
class

Except the word interface is used in place of class

e An interface specifies a set of methods that any class that
Implements the interface must have

It contains method headings (and optionally static final constant
definitions) only

It contains no instance variables nor any complete method
definitions

10/11 4

Interfaces .

e An interface and all of its method headings should be declared
public

They cannot be given private, protected, or package access

e When a class implements an interface, it must make all the
methods in the interface public.

e Because an interface is a type, a method may be written with a
parameter of an interface type

That parameter will accept as an argument any class that
Implements the interface

10/11

Implementing an Interface

e TO create a class that implements all the
methods defined in an interface, use the
keyword implements.

e Whereas interface defines the headings for
methods that must be defined, a class that
Implements the interface defines how the
methods work.

10/11 6

The Animal Interface

public interface Animal

{
public void eat();

}

Yes, animals do more than eat, but we're trying
to make this a simple example.

10/11 7

Interfaces .

e To implement an interface, a concrete class must do
two things:

It must include the phrase
implements Interface Name
at the start of the class definition

If more than one interface is implemented,
each is listed, separated by commas

The class must implement all the method
headings listed in the definition(s) of the
Interface(s)

10/11 8

Implementing Animal T

// Lion and Snake implement the required eat() method
public class Lion implements Animal

{
public void eat ()
{ System.out.println("Lions Devour"); 1}

}
public class Snake implements Animal

{
public void eat ()
{ System.out.println("Snakes swallow whole"); }

10/11

Implementing Animal

// Dog implements the required eat() method and has
// some of its own methods and instance variables
public class Dog implements Animal {
private String name;
Dog (String newName)
{name = newName; }

public void eat ()
{System.out.println ("Dog chews a bone");}

// Poodle is derived from Dog, so it inherits eat()

// Adds a method of its own
public class Poodle extends Dog
{

Poodle (String name)
{ super (name); } // call Dog constructor

public String toString()
{ return "Poodle"; }

Jo/11

10

Implementing Animal

// Using classes that implement Animal
public class Jungle
{

public static void feed(Animal a)
{ a.eat(); }

String[] args) {
{

public static void main (
Animal[] animals =
new Lion(),
new Poodle("Fluffy"“),
new Dog("Max"“),
new Snake()

b
for (int 1 = 0; 1 < animals.length; 1i++)
feed(animals[1])

// —--—- Output
Lions Devour

Dog chews a bone
Dog chews a bone
Shakes swallow whole

11

Extending an Interface

e An new interface can add method definitions to an
existing interface by extending the old

interface TiredAnimal extends Animal

{
public void sleep();

}

The TiredAnimal interface includes both eat() and
sleep();

10/11 12

Interface Semantics Are Not Enforced °

e When a class implements an interface, the compiler and run-time
system check the syntax of the interface and its implementation

However, neither checks that the body of an interface is
consistent with its intended meaning

e Required semantics for an interface are normally added to the
documentation for an interface

It then becomes the responsibility of each programmer
Implementing the interface to follow the semantics

e If the method body does not satisfy the specified semantics, then
software written for classes that implement the interface may not
work correctly

10/11 13

The Comparable Interface Sos

e The Comparable interface is in the java.lan

package, and so is automatically available to any
orogram

t has only the following method heading that must
pe implemented (note the Object parameter)
public int compareTo (Object other);

It is the programmer's responsibility to follow the
semantics of the Comparable interface when

Implementing it
When implementing compareTo, you would of

course overload it by using an appropriate
parameter type

Copyright © 2008 Pearson Addison-Wesley. 14
All rights reserved

The Comparable Interface Semantics -$4-

e The method compareTo must return

e A negative number if the calling object "comes before" the
parameter other

e A zero if the calling object "equals" the parameter other

e A positive number if the calling object "comes after" the
parameter other

e If the parameter other Is not of the same type as

the class being defined, then a
ClassCastException should be thrown

10711 Copyright © 2008 Pearson Addison-Wesley. 15
All rights reserved

The Comparable Interface Semantics °

e Almost any reasonable notion of "comes
before" Is acceptable

In particular, all of the standard less-than relations
on numbers and lexicographic ordering on strings
are suitable

e The relationship "comes after" is just the
reverse of "comes before"

10/11 16

compareTo for Person

public class Person implements Comparable

{

private String name; If obj is not a Person object a
ClassCastException
will be thrown

public int compareTo(Object obj

{
Person p = (Person)obj; *——__
return name.compareTo (p.name) ;

} Comparing the names using
String’s compareTo method

10/11 17

Using Comparable
public class NumTests { o

// find the smallest Integer in an array
// Integer (implements Comparable)

public static void findSmallest (Integer[] values) {
int index = 0; // index of smallest value
for (int 1 = 1; 1 < values.length; 1i++)
{
1if (values([1].compareTo(values[index]) < 0)
index = 1;

}

System.out.println("Index of smallest value is “ + index);

10/11 18

Using Comparable 3

// prints the index of the smallest Integer in an array
// Note use of Integer, not int

public class Test{
public static void main(String[] args)

{

Integer|[] values = {
new Integer (144), new Integer(200), new Integer(99),
new Integer (42) new Integer (132) 1};

NumTests.findSmallest (values) ;

4

}

e But what if we wanted to operate on Floats, or
Strings, or...
e Power comes from the fact that interfaces are also

types

10/11 19

Using Comparable
public class NumTests { o

// find the smallest Integer in an array
// Integer (implements Comparable)

public static void findSmallest (Integer /(] values) {
int index = 0; // index of smallest value
for (int 1 = 1; 1 < values.length; 1i++)
{
1if (values([1].compareTo(values[index]) < 0)
index = 1;

}

System.out.println("Index of smallest value is “ + index);

10/11 20

Using Comparable
public class NumTests { o

// find the smallest thing in an array
// Comparable is a type!

public static void findSmallest (Comparable[] wvalues) {
int index = 0; // index of smallest value
for (int 1 = 1; 1 < values.length; 1i++)
{
1if (values([1].compareTo(values[index]) < 0)
index = 1;

}

System.out.println("Index of smallest value is “ + index);

10/11 21

o060
0000
. . 0000

Implementing Multiple Interfaces | 2:¢
o

e Recall the Animal interface from earlier

public i1nterface Animal

{

public void eat();
} Just separate the
Interface names with a
e Define the Cat interface comma

public interface Cat

{

void purr(); // public by default;
}
// since a Lion is an Animal and a Cat
// to implement both interfaces
public class Lion implements Animal,” Cat

{

Lion may wish

public void eat() {System.out.println(“Big Gulps”);}
public void purr() {System.out.println (“ROOOAAAR!") ;}

10/11 22

Inconsistent Interfaces :

e In Java, a class can have only one base class

This prevents any inconsistencies arising from different
definitions having the same method heading

e In addition, a class may implement any number of
Interfaces

Since interfaces do not have method bodies, the above
problem cannot arise

However, there are other types of inconsistencies that can
arise

10/11 23

Inconsistent Interfaces :

e \When a class implements two interfaces:

Inconsistency will occur if the interfaces contain methods
with the same name but different return types

e If a class definition implements two inconsistent
Interfaces, then that is an error, and the class
definition is illegal

10/11 24

