
CMSC 202

Inheritance II

Version 10/11 2

Inherited Constructors?

An Employee constructor cannot be used to

create HourlyEmployee objects. Why not?

We must implement a specialized constructor

for HourlyEmployees. But how can the

HourlyEmployee constructor initialize the

private instance variables in the Employee

class since it doesn’t have direct access?

Version 10/11 3

The super Constructor

 A derived class uses a constructor from the base class
to initialize all the data inherited from the base class

 In order to invoke a constructor from the base class, it
uses a special syntax:

 public DerivedClass(int p1, int p2, double p3)

 {

 super(p1, p2);

 derivedClassInstanceVariable = p3;

 }

 In the above example, super(p1, p2); is a call to
the base class constructor

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 4

The super Constructor

 A call to the base class constructor can never use

the name of the base class, but uses the keyword
super instead

 A call to super must always be the first action taken

in a constructor definition

 An instance variable cannot be used as an
argument to super. Why not?

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 5

The super Constructor

 If a derived class constructor does not include an
invocation of super, then the no-argument
constructor of the base class will automatically be
invoked
 This can result in an error if the base class has not defined

a no-argument constructor

 Since the inherited instance variables should be
initialized, and the base class constructor is
designed to do that, an explicit call to super should
almost always be used.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 6

HourlyEmployee Constructor

public class HourlyEmployee extends Employee

{

 private double wageRate;

 private double hours; // for the month

 // the no-argument constructor invokes

 // the Employee (super) no-argument constructor

 // to initialize the Employee instance variables

 // then initializes the HourlyEmployee instance variables

 public HourlyEmployee()

 {

 super();

 wageRate = 0;

 hours = 0;

 }

Version 10/11 7

HourlyEmployee Constructor
 // the alternative HourlyEmployee constructor invokes an

 // appropriate Employee (super) constructor to initialize

 // the Employee instance variables (name and date), and then

 // initializes the HourlyEmployee rate and hours

 public HourlyEmployee(String theName, Date theDate,

 double theWageRate, double theHours)

 {

 super(theName, theDate);

 if ((theWageRate >= 0) && (theHours >= 0))

 {

 wageRate = theWageRate;

 hours = theHours;

 }

 else

 {

 System.exit(0);

 }

 }

Version 10/11 8

Review of Rules For Constructors

 Constructors can chain to other constructors:
 in own class, by invoking this(…);

 in parent class, by invoking super(…);

 If there is an explicit call to this(…) or super(…),
it must be the very first statement in the body
 It must come even before any local variable declarations

 You can have call to either this() or super(), but not
both

 If you don’t have explicit call to this() or super(), an
implicit call to a no-arg super() is implicitly inserted

Version 10/11 9

Review of Rules For Constructors

 If your class has no explicit constructor, Java
automatically provides a no-arg constructor for you

 Implied by above rules:
At least one constructor will be called at each class
level up the inheritance hierarchy, all the way to the
top (Object)

Version 10/11 10

Access to a Redefined Base Method

 Within the definition of a method of a derived class,
the base class version of an overridden method of the
base class can still be invoked
 Simply preface the method name with super and a dot

// HourlyEmployee’s toString() might be

public String toString()

{

 return (super.toString() + "$" + getRate());

}

 However, using an object of the derived class outside
of its class definition, there is no way to invoke the
base class version of an overridden method

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 11

You Cannot Use Multiple supers

 It is only valid to use super to invoke a method from a
direct parent

 Repeating super will not invoke a method from some
other ancestor class

 For example, if the Employee class were derived from
the class Person, and the HourlyEmployee class
were derived form the class Employee , it would not
be possible to invoke the toString method of the
Person class within a method of the
HourlyEmployee class

super.super.toString() // ILLEGAL!

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 12

You Cannot Use Multiple supers

 Why this restriction (i.e., no super.super.method())?

 Because Java enforces strict encapsulation

 Each class has complete control over its interface
 A client using class X (either as local variable, or instance

variable for composition) can only access class X’s public
instance variables and methods

 Even a derived class is a “client” of sorts, with the base
class presenting a controlled interface to classes extending
it
 But access controls can be defined differently for clients versus

derived classes (e.g., protected visibility modifier)

 Strictly layered management style: no “skip-levels”
allowed (going to your boss’s boss)

Version 10/11 13

An Object of a Derived Class Has More than One Type

 An object of a derived class has the type of the

derived class, and it also has the type of the base

class

 More generally, an object of a derived class has the

type of every one of its ancestor classes

 Therefore, an object of a derived class can be assigned to

a variable of any ancestor type

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 14

An Object of a Derived Class Has More than One Type

 An object of a derived class can be plugged in as a
parameter in place of any of its ancestor classes

 In fact, a derived class object can be used anyplace
that an object of any of its ancestor types can be
used

 Note, however, that this relationship does not go the
other way
 An ancestor type can never be used in place of one of its

derived types

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 15

Base/Derived Class Summary

Assume that class D (Derived) is derived from class B (Base).

1. Every object of type D is a B, but not vice versa.

2. D is a more specialized version of B.

3. Anywhere an object of type B can be used, an object of type D

can be used just as well, but not vice versa.

(Adapted from: Effective C++, 2nd edition, pg. 155)

Version 10/11 16

Protected Access

 If a method or instance variable is modified by protected
(rather than public or private), then it can be accessed by
name

 Inside its own class definition

 Inside any class derived from it

 In the definition of any class in the same package

 The protected modifier provides very weak protection
compared to the private modifier

 It allows direct access to any programmer who defines a suitable
derived class

 Therefore, instance variables should normally not be marked
protected

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 17

“Package” Access

 If a method or instance variable has no visibility modifier
(public private, or protected), it is said to have “package
access”, and it can be accessed by name

 Inside its own class definition

 In the definition of any class in the same package

 BUT NOT inside any class derived from it

 So, the implicit “package” access provides slightly stronger
protection than the protected modifier, but is still very weak
compared to the private modifier

 By design, it is used when a set of classes closely cooperate to
create a unified interface

 By default, it is used by novice programmers to get started
without worrying about visibility modifiers or packages

Version 10/11 18

Tip: Static Variables Are Inherited

 Static variables in a base class are inherited

by any of its derived classes

 The modifiers public, private, and

protected have the same meaning for

static variables as they do for instance

variables

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 19

The Class Object

 In Java, every class is a descendent of the class
Object

 Object is the root of the entire Java class hierarchy

 Every class has Object as its ancestor

 Every object of every class is of type Object, as well as

being of the type of its own class (and also all classes in

between)

 If a class is defined that is not explicitly a derived

class of another class, it is by default a derived class
of the class Object

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 20

The Class Object

 The class Object is in the package java.lang
which is always imported automatically

 Having an Object class enables methods to be
written with a parameter of type Object
 A parameter of type Object can be replaced by an object

of any class whatsoever

 For example, some library methods accept an argument of
type Object so they can be used with an argument that is
an object of any class

 Recall the ArrayList class (an old form of it) we studied
earlier: the store and retrieve methods were declared to
work on instances of type Object

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 21

The Class Object

 The class Object has some methods that every Java class
inherits
 For example, the equals and toString methods

 Every object inherits these methods from some ancestor class
 Either the class Object itself, or a class that itself inherited these

methods (ultimately) from the class Object

 However, these inherited methods should be overridden with
definitions more appropriate to a given class
 Some Java library classes assume that every class has its own

version of such methods

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 22

The Right Way to Define equals

 Since the equals method is always inherited from

the class Object, methods like the following simply

overload it:
public boolean equals(Employee otherEmployee)

 { . . . }

 However, this method should be overridden, not

just overloaded:
public boolean equals(Object otherObject)

 { . . . }

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 23

Why equals() Must be Overridden

Imagine we have:
public class Point {

 public int x, y;

 … // Stuff here like constructors, etc.

 public boolean equals(Point otherPt) {

 return (x == otherPt.x && y == otherPt.y);

 }

}

public class Point3D extends Point {

 public int z;

 public boolean equals(Point3D otherPt) {

 return (x == otherPt.x && y == otherPt.y && z == otherPt.z);

 }

}

 …

 Point pt2d = new Point(1.0, 2.0);

 Point3D pt3d = new Point3D(1.0, 2.0, 3.0);

 if (pt3D.equals(pt2D))

 System.out.println(“pt2d and pt3D equal”);

What will it print out?

Version 10/11 24

The Right Way to Define equals

 The overridden version of equals must meet the
following conditions
 The parameter otherObject of type Object must be

type cast to the given class (e.g., Employee)

 However, the new method should only do this if
otherObject really is an object of that class, and if
otherObject is not equal to null

 Finally, it should compare each of the instance variables of
both objects

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 25

A Better equals Method for the Class Employee

public boolean equals(Object otherObject)

{

 if(otherObject == null)

 return false;

 else if(getClass() != otherObject.getClass())

 return false;

 else

 {

 Employee otherEmployee = (Employee)otherObject;

 return (name.equals(otherEmployee.name) &&

 hireDate.equals(otherEmployee.hireDate));

 }

}

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 26

The getClass() Method

 Every object inherits the same getClass() method
from the Object class
 This method is marked final, so it cannot be overridden

 An invocation of getClass() on an object returns
a representation only of the class that was used with
new to create the object
 The results of any two such invocations can be compared

with == or != to determine whether or not they represent
the exact same class

(object1.getClass() == object2.getClass())

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 27

Basic Class Hierarchy Design

 How many levels of classes should we create?
 Two extremes:

 MovableThing -> A1981BlueMiataWithBlackVinylTop vs.

 Vehicle->Car->Car2Door->Convertible2Door->Miata->BlueMiata->…

 or something in between, perhaps? Yes…

 Create intermediate classes where you do—or might
later—want to make a distinction that splits the tree

 It is easier to create than take away intermediate
classes.

 What to put at a given level?
 Maximize abstracting out common elements

 But, think about future splits, and what is appropriate at
given level

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

