
CMSC 202H

Inheritance I

Class Reuse with Inheritance

Version 10/11 2

Class Reuse

 We have seen how classes (and their code)

can be reused with composition.
 An object has another object as one (or more) of its instance

variables.

 Composition models the “has a” relationship.
 A Person has a String (name)

 A Car has an Engine

 A Book has an array of Pages

Version 10/11 3

Object Relationships

 An object can be a specialized version of another object.
 A Car is a Vehicle

 A Triangle is a Shape

 A Doctor is a Person

 A Student is a Person

This kind of relationship is known as the “is a type of” relationship.

 In OOP, this relationship is modeled with the
programming technique known as inheritance.

 Inheritance creates new classes by adding code to an
existing class. The existing class is reused without
modification.

Version 10/11 4

Introduction to Inheritance

 Inheritance is one of the main techniques of OOP.

 Using inheritance
 a very general class is first defined,

 then more specialized versions of the class are defined by

 adding instance variables and/or

 adding methods.

 The specialized classes are said to inherit the methods and
instance variables of the general class.

Version 10/11 5

Derived Classes

 There is often a natural hierarchy when designing

certain classes.

 Example:

 In a record-keeping program for the employees of a

company, there are hourly employees and salaried

employees.

 Hourly employees can be further divided into full time and

part time workers.

 Salaried employees can be divided into those on the

technical staff and those on the executive staff.

Version 10/11 6

A Class Hierarchy

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 7

Derived Classes
 All employees have certain characteristics in

common:

 a name and a hire date

 the methods for setting and changing the names and hire
dates

 Some employees have specialized characteristics:

 Pay
 hourly employees are paid an hourly wage

 salaried employees are paid a fixed wage

 Calculating wages for these two different groups would be
different.

Version 10/11 8

Inheritance and OOP

 Inheritance is an abstraction for

 sharing similarities among classes (name and

hireDate), and

 preserving their differences (how they get paid).

 Inheritance allows us to group classes into

families of related types (Employees), allowing

for the sharing of common operations and

data.

Version 10/11 9

General Classes

 A class called Employee can be defined that

includes all employees.

 This class can then be used as a foundation to define

classes for hourly employees and salaried employees.

 The HourlyEmployee class can be used to define a

PartTimeHourlyEmployee class, and so forth.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 10

The Employee Class

/**

 Class Invariant: All objects have a name string and hire date.

 A name string of "No name" indicates no real name specified yet.

 A hire date of Jan 1, 1000 indicates no real hire date specified yet.

*/

public class Employee

{

 private String name;

 private Date hireDate;

 // no-argument constructor

 public Employee()

 {

 name = "No name";

 hireDate = new Date("Jan", 1, 1000); //Just a placeholder.

 }

 // alternate constructor

 public Employee(String theName, Date theDate) { /* code here */ }

 // copy constructor

 public Employee(Employee originalObject) { /* code here */ }

 (continued)

Version 10/11 11

Employee Class

 // some accessors and mutators

 public String getName() { /* code here */ }

 public Date getHireDate() { /* code here */ }

 public void setName(String newName) { /* code here */ }

 public void setHireDate(Date newDate) { /* code here */ }

 // everyone gets the same raise

 public double calcRaise()

 { return 200.00; }

 // toString and equals

 public String toString() { /* code here */ }

 public boolean equals(Employee otherEmployee)

 { /* code here */ }

} // end of Employee Class

Version 10/11 12

Derived Classes

 Since an hourly employee “is an” employee, we want our
class HourlyEmployee to be defined as a derived class
of the class Employee.

 A derived class is defined by adding instance variables and/or
methods to an existing class.

 The class that the derived class is built upon is called the base
class.

 The phrase extends BaseClass must be added to the derived
class definition:

 public class HourlyEmployee extends Employee

 In OOP, a base class/derived class relationship is
alternatively referred to by the term pairs:
 superclass/subclass

 parent class/child class

Version 10/11 13

HourlyEmployee Class

/**

 Class Invariant: All objects have a name string, hire date,

nonnegative wage rate, and nonnegative number of hours worked. */

public class HourlyEmployee extends Employee

{

 // instance variables unique to HourlyEmployee

 private double wageRate;

 private double hours; //for the month

 // no-argument Constructor

 public HourlyEmployee() { /* code here */}

 // alternative constructor

 public HourlyEmployee(String theName, Date theDate,

 double theWageRate, double theHours) { /* code here */}

 // copy constructor

 public HourlyEmployee(HourlyEmployee originalHE) { /* code here */}

 (continued)

Version 10/11 14

HourlyEmployee Class

 // accessors and mutator specific to HourlyEmployee

 public double getRate() { /* code here */ }

 public double getHours() { /* code here */ }

 public void setHours(double hoursWorked) { /* code here */ }

 public void setRate(double newWageRate) { /* code here */ }

 // toString and equals specific for HourlyEmployee

 public String toString() { /* code here */ }

 public boolean

 equals(HourlyEmployee otherHE) { /* code here */ }

} // end of HourlyEmployee Class

Version 10/11 15

Derived Class (Subclass)

 The derived class inherits all of the
 public methods (and private methods, indirectly),

 public and private instance variables, and

 public and private static variables

from the base class.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 16

Inherited Members

 The derived class inherits all of the
 public methods (and private methods, indirectly),

 public and private instance variables, and

 public and private static variables

 from the base class.

 Definitions for the inherited variables and methods do
not appear in the derived class’s definition.
 The code is reused without having to explicitly copy it, unless the

creator of the derived class redefines one or more of the base
class methods.

 All instance variables, static variables, and/or methods
defined directly in the derived class’s definition are
added to those inherited from the base class

17

Using HourlyEmployee

public class HourlyEmployeeExample

{

public static void main(String[] args)

{

 HourlyEmployee joe =

 new HourlyEmployee("Joe Worker", new Date(1, 1, 2004), 50.50, 160);

 // getName is defined in Employee

 System.out.println("joe's name is " + joe.getName());

 // setName is defined in Employee

 System.out.println("Changing joe's name to Josephine.");

 joe.setName("Josephine");

 // setRate is specific for HourlyEmployee

 System.out.println(“Giving Josephine a raise”);

 joe.setRate(65.00);

 // calcRaise is defined in Employee

 double raise = joe.calcRaise();

 System.out.println(“Joe’s raise is “ + raise);

 }

}

Version 10/11

Version 10/11 18

Overriding a Method Definition

 A derived class can change or override an
inherited method.

 In order to override an inherited method, a
new method definition is placed in the derived
class definition.

 For example, perhaps the HourlyEmployee
class had its own way to calculate raises. It
could override Employee’s calcRaise()
method by defining its own.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 19

Overriding Example
public class Employee

{

 public double calcRaise() { return 200.00; }

}

public class HourlyEmployee extends Employee

{

 // overriding calcRaise – same signature as in Employee

 public double calcRaise() return 500.00; }

}

Now, this code

 HourlyEmployee joe = new HourlyEmployee();

 double raise = joe.calcRaise();

invokes the overridden calcRaise method in the HourlyEmployee class rather than the
calcRaise() method in the Employee class

To override a method in the derived class, the overriding method must have the same method
signature as the base class method.

Version 10/11 20

Overriding Versus Overloading

 Do not confuse overriding a method in a derived

class with overloading a method name.

 When a method in a derived class has the same signature

as the method in the base class, that is overriding.

 When a method in a derived class or the same class has a

different signature from the method in the base class or the

same class, that is overloading.

 Note that when the derived class overrides or overloads the

original method, it still inherits the original method from the

base class as well (we’ll see this later).

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 21

The final Modifier

 If the modifier final is placed before the
definition of a method, then that method may
not be overridden in a derived class.

 It the modifier final is placed before the
definition of a class, then that class may not
be used as a base class to derive other
classes.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 22

Pitfall: Use of Private Instance Variables

 from a Base Class

 An instance variable that is private in a base class is not
accessible by name in a method definition of a derived
class.

 An object of the HourlyEmployee class cannot access the
private instance variable hireDate by name, even though it is
inherited from the Employee base class.

 Instead, a private instance variable of the base class
can only be accessed by the public accessor and
mutator methods defined in that class.

 An object of the HourlyEmployee class can use the
getHireDate or setHireDate methods to access
hireDate.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 23

Encapsulation and Inheritance Pitfall:

 Use of Private Instance Variables from a Base Class

 If private instance variables of a class were

accessible in method definitions of a derived

class, …

 then anytime someone wanted to access a private

instance variable, they would only need to create a

derived class, and access the variables in a method of

that class.

 This would allow private instance variables to be

changed by mistake or in inappropriate ways.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 24

Pitfall: Private Methods Are Effectively Not Inherited

 The private methods of the base class are like private variables
in terms of not being directly available.

 A private method is completely unavailable, unless invoked
indirectly.

 This is possible only if an object of a derived class invokes a
public method of the base class that happens to invoke the
private method.

 This should not be a problem because private methods should
be used only as helper methods.

 If a method is not just a helper method, then it should be public.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

