
Classes and Objects Miscellany:

I/O, Statics, Wrappers & Packages

CMSC 202H (Honors Section)

John Park

Basic Input/Output

Version 9/10 2

Printing to the Screen

In addition to System.out.print() (and println()):

• Formatted output

• System.out.printf("Printing integer %d%n",5);

• System.out.printf("%d %c %d", 1, 'a', 2);

• Place holders can be added to represent variables to be
output in the format string.
• %d, %c, %f, %s – What does each stand for?
• Every place holder that appears inside the output string must

have a matching value separated by a comma.

• Add proceeding white space characters and precision to
variables printed.
– System.out.printf("2 points of precision %10.2d", 89.999);

• ―Two points of precision 90.00‖ ← no newline character

• Other special formatting
• %n – platform independent newline character
• \t – horizontal tab

3

Reading From the Console

• Java’s Scanner object reads in input that the user
enters on the command line.

• System.in is a reference to the standard input
buffer.

• We can read values from the Scanner object using
the dot notation to invoke a number of functions.

– nextInt() — returns the next integer from the buffer

– nextFloat() — returns the next float from the buffer

– nextLine() — returns the entire line as a String

Scanner input = new Scanner(System.in);

4

Scanner Notes

• In order to use the Scanner class, you’ll need
to add the following line to the top of your
code…

• You should never declare more than one
Scanner object on a given input stream.

• The Scanner object will wait for a user to type,
and read all text entered up until the user
presses the “enter” key (including the newline
character).

import java.util.Scanner;

5

Reading from the Console

• Let’s assume the user has entered ―128 10‖ .

• The first call to nextInt() reads the characters ―128‖
leaving ― 10\n‖ in the input buffer.

• The second call to nextInt() reads the ―10‖ and leaves
the ―\n‖ in the buffer.

„1‟ … „\n‟ „0‟ „1‟ „ ‟ „8‟ „2‟

System.out.print("Enter 2 numbers to sum: ");

Scanner input = new Scanner(System.in);

int n1 = input.nextInt();

int n2 = input.nextInt();

System.out.printf("%d + %d = %d", n1, n2, n1 + n2);

6

Reading via UNIX Redirection

• The Scanner class also has a bunch of
hasNextX() methods to detect if there’s another
data item of the given type in the stream.

• For example, this is useful if we were reading an
unknown quantity of integers from a file that is
redirected into our program (as above).

% cat numbers

1 2 3

4

5 6 7

8

% java Sum < numbers

Sum: 36

%

int sum = 0;

Scanner input = new Scanner(System.in);

while(input.hasNextInt()) {

 sum += input.nextInt();

}

System.out.println("Sum: " + sum);

7

Packages, Compilation and Execution

Version 9/10 8

Packages

• Java allows you to partition your classes into sets

and subsets, called packages.

• You place your class into a package with the

directive:

 package myPackage;

• If the ―package‖ directive is missing, the class is

placed into the unnamed package

• A Java package is similar to a ―namespace‖: it

implicitly prepends a prefix of your choice to all

classes you define.

Version 9/10 9

Packages

• You can refer to all objects via its fully-

qualified name, e.g.:
myPackage.MyClass foo = new myPackage.MyClass();

• Within a class definition, class references

without explicit package name prefixes

refer to other classes in your package

– This is modified by importing other packages

• In addition to its use for namespaces,

packages affect the function of some

visibility modifiers (later)

Version 9/10 10

Importing Packages

• Import single class by using:

 import java.util.Random;

• Or, import many classes, with wildcard:

 import java.util.*;

– Cannot ―import java.*.*;‖

– Importing is not recursive (e.g. java.* != java.util.*)

– Importing singly is preferred (why?)

• java.lang.* is already implicitly imported

• However, all other java.*… must be explicitly

imported

Version 9/10 11

Package Naming Conventions

• Initially, beginners use the unnamed

package

• For simple, standalone applications, use

simple one-token package names, e.g.:

―proj1‖ (note lowercase)

• For packages to be deployed outside the

organization, use inverse-domain-address-

like notation, e.g.:

edu.umbc.csee.cmsc202.utilityPackage

Version 9/10 12

Packages: Example

 package proj3;

import java.util.Random;

public class MyClass {

 // Stuff inside this class definition

 public static int someMethod() {

 Random rand = new Random();

 …

 }

}

 // No “package” directive, so in unnamed package

// No “import” directive, so all class names must be full

public class MyOtherClass {

 // Stuff inside this class definition

 public static int someMethod() {

 proj3.MyClass myClassInst = new proj3.MyClass();

 java.util.Random rand = new java.util.Random();

 …

 }

}

Version 9/10 13

Java Program Review

• Java source code can be compiled under any operating system.
– javac -d . SimpleProgram.java

– javac -d . OtherProgram.java

• Java will create a directory named demos containing
– SimpleProgram.class

– OtherProgram.class

• We can execute SimpleProgram with the following.
– java demos.SimpleProgram

• We can execute OtherProgram with the following.
– Java demos.OtherProgram

• We can execute any class’ main in a similar manner.
– java <package name>.<Class name>

package demos;

public class SimpleProgram {

 public static void main (String[] args){

 System.out.println("Hello World");

 }

}

package demos;

public class OtherProgram {

 public static void main (String[] args){

 System.out.println("Hello World 2");

 }

}

14

Command Line Arguments

• Anything that follows the name of the main class to be
executed will be read as a command line argument.

• All text entered will be stored in the String array specified in
main (typically args by convention).
– java demos.ArgsDemo Hi

– Results in ―Hi‖ stored at args[0]

• Individual arguments can be separated by spaces like so
– java demos.ArgsDemo foo 123 bar

– Results in ―foo‖ stored at args[0], ―123‖ at args[1] and ―bar‖ at
args[2]

package demos;

public class ArgsDemo {

 public static void main (String[] args){

 for(int i = 0; i < args.length; i++){

 System.out.println(args[i]);

 }

 }

}

15

What Does ―Static‖ Mean?

Version 9/10 16

The Problem of Words

 "When I use a word," Humpty Dumpty said in rather a scornful tone, "it means just

what I choose it to mean -- neither more nor less."

"The question is," said Alice, "whether you can make words mean so many different

things."

"The question is," said Humpty Dumpty, "which is to be master - - that's all."

Lewis Carroll, Through the Looking Glass

• So, what do static (and final) mean in Java?
– public static final float PI = 3.14159;

– public static int timesCreated;

– public static void main(String[] args) {…}

• …and why do they mean that?!

Version 9/10 17

History of static

• In C, originally needed a way to let a

variable keep its value unchanged across

calls, i.e., keep it ―static‖

• Extended scope to repurpose static

keyword for file-scope global variables

• Java repurposed the word multiple times

again, in an OOP context

• Humpty Dumpty would have loved static

Version 9/10 18

Version 9/10 19

What Does ―static‖ Mean in Java?

• Instance variables, constants, and methods
may all be labeled as static.

• In this context, static means that there is

one copy of the variable, constant, or

method that belongs to the class as a

whole, and not to a particular instance.

• It is not necessary to instantiate an object

to access a static variable, constant or

method.

Version 9/10 20

Static Variables

• A static variable belongs to the class as a whole, not just
to one object.

• There is only one copy of a static variable per class.

• All objects of the class can read and change this static

variable.

• A static variable is declared with the addition of the

modifier static.
static int myStaticVariable;

• Static variables can be declared and initialized at the
same time.

static int myStaticVariable = 0;

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 9/10 21

Static Constants
• A static constant is used to symbolically represent a constant value.

• In some languages (e.g., C) constants are simply implemented as
macros, used to replace text.

• In Java, constants derive from regular variables, by ―finalizing‖ them

– The declaration for a static defined constant must include the modifier
final, which indicates that its value cannot be changed.

 public static final int BIRTH_YEAR = 1954;

(The modifier final is also overloaded, and means other things in other
contexts, as we shall see later.)

• Static constants belong to the class as a whole, not to each object, so
there is only one copy of a static constant

• When referring to such a defined constant outside its class, use the
name of its class in place of a calling object.

int year = MyClass.BIRTH_YEAR;

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 22

Static Methods

So far,

• class methods required a calling object in order
to be invoked.

 Date birthday = new Date(1, 23, 1982);

 String s = birthday.toString();

• These are sometimes known as non-static
methods.

Static methods:

• still belong to a class, but need no calling object,
and

• often provide some sort of utility function.

Version 9/10 23

monthString Method
Recall the Date class private helper method monthString.

– Translates an integer month to a string

– Note that the monthString method
• Does not call any other methods of the Date class, and

• Does not use any instance variables (month, day, year) from the Date class.

• This method can be made available to users of the Date class without
requiring them to create a Date object.

 public static String monthString(int monthNumber) {

 switch (monthNumber) {

 case 1: return "January";

 case 2: return "February";

 case 3: return "March";

 case 4: return "April";

 case 5: return "May";

 case 6: return "June";

 case 7: return "July";

 case 8: return "August";

 case 9: return "September";

 case 10: return "October";

 case 11: return "November";

 case 12: return "December";

 default: return “????”;

 }

 }

It is now a

public static

method.

Version 9/10 24

monthString Demo

• Code outside of the Date class can now use the
monthString method without creating a Date object.

• Prefix the method name with the name of the class
instead of an object.

class MonthStringDemo

{

 public static void main(String [] args)

 {

 String month = Date.monthString(6);

 System.out.println(month);

 }

}

Date is a class name,

not an object name.

monthString is the name

of a static method

Version 9/10 25

Rules for Static Methods

• Static methods have no calling/host object (they have no
this).

• Therefore, static methods cannot:

– Refer to any instance variables of the class

– Invoke any method that has an implicit or explicit this for a
calling object

• Static methods may invoke other static methods or refer
to static variables and constants.

• A class definition may contain both static methods and
non-static methods.

Version 9/10 26

Static Fo to Co Convert Example

public class FtoC

{

 public static double convert(double degreesF)

 { return 5.0 / 9.0 * (degreesF – 32); }

}

public class F2CDemo

{

 public static void main(String[] args)

 {

 double degreesF = 100;

 // Since convert is static, no object is needed

 // The class name is used when convert is called

 double degreesC = FtoC.convert(degreesF);

 System.out.println(degreesC);

 }

}

Version 9/10 27

main is a Static Method

Note that the method header for main() is

public static void main(String [] args)

Being static has two effects:

• main can be executed without an object.

• ―Helper‖ methods called by main must also

be static.

Version 9/10 28

Any Class Can Have a main()

• Every class can have a public static

method name main().

• Java will execute main in whichever class

is specified on the command line.

 java <className>

• A convenient way to write test code for your

class.

Version 9/10 29

The Math Class
• The Math class provides a number of standard

mathematical methods.

– Found in the java.lang package, so it does not

require an import statement

– All of its methods and data are static.
• They are invoked with the class name Math instead of a

calling object.

– The Math class has two predefined constants,

 E (e, the base of the natural logarithm system)
and PI (, 3.1415 . . .).

 area = Math.PI * radius * radius;

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 30

Some Methods in the Class Math

(Part 1 of 5)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 31

Some Methods in the Class Math

(Part 2 of 5)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 32

Some Methods in the Class Math

(Part 3 of 5)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 9/10 33

Some Methods in the Class Math

(Part 4 of 5)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 34

Some Methods in the Class Math

(Part 5 of 5)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 9/10 35

Static Review

• Given the skeleton class definition below

public class C

{
public int a = 0;
public static int b = 1;

public void f() { …}
public static void g() {…}

}

• Can body of f() refer to a?

• Can body of f() refer to b?

• Can body of g() refer to a?

• Can body of g() refer to b?

• Can f() call g()?

• Can g() call f()?

– For each, explain why or why not.

Wrapper Classes

Version 9/10 36

Version 9/10 37

Wrapper Classes
• Wrapper classes

– Provide a class type corresponding to each of the primitive types

– Makes it possible to have class types that behave somewhat like
primitive types

– The wrapper classes for the primitive types:

byte, short, int, long, float, double, and char

 are (in order)

 Byte, Short, Integer, Long, Float, Double,

and Character

– Wrapper classes also contain useful

• predefined constants

• static methods

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 9/10 38

Constants and Static Methods

 in Wrapper Classes

• Wrapper classes include constants that provide
the largest and smallest values for any of the
primitive number types.

– Integer.MAX_VALUE, Integer.MIN_VALUE,
Double.MAX_VALUE, Double.MIN_VALUE, etc.

• The Boolean class has names for two constants
of type Boolean.

– Boolean.TRUE corresponds to true

– Boolean.FALSE corresponds to false

of the primitive type boolean.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 39

Constants and Static Methods

in Wrapper Classes

• Some static methods convert a correctly formed string representation
of a number to the number of a given type.

– The methods Integer.parseInt(), Long.parseLong(),
Float.parseFloat(), and Double.parseDouble()

 do this for the primitive types (in order) int, long, float, and double.

• Static methods convert from a numeric value to a string
representation of the value.

– For example, the expression

Double.toString(123.99);

 returns the string value "123.99"

• The Character class contains a number of static methods that are
useful for string processing.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 40

Wrappers and

Command Line Arguments

• Command line arguments are passed to main via
its parameter conventionally named args.

public static void main (String[] args)

• For example, if we execute our program as

 java proj1.Project1 Bob 42

 then args[0] = ―Bob‖ and args[1] = ―42‖.

• We can use the static method Integer.parseInt()
to change the argument ―42‖ to an integer
variable via
 int age = Integer.parseInt(args[1]);

Version 9/10 41

Methods in the Class Character (1 of 3)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 42

Methods in the Class Character (2 of 3)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 43

Methods in the Class Character (3 of 3)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 9/10 44

Boxing

• Boxing: The process of converting from a value
of a primitive type to an object of its wrapper
class.
– Create an object of the corresponding wrapper class

using the primitive value as an argument

– The new object will contain an instance variable that
stores a copy of the primitive value.

Integer integerObject = new Integer(42);

– Unlike most other classes, a wrapper class does not
have a no-argument constructor.

– The value inside a Wrapper class is immutable.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 45

Unboxing

• Unboxing: The process of converting from an object of a
wrapper class to the corresponding value of a primitive
type.

– The methods for converting an object from the wrapper classes

 Byte, Short, Integer, Long, Float,
 Double, and Character

 to their corresponding primitive type are (in order)

 byteValue, shortValue, intValue,
 longValue, floatValue, doubleValue,
 and charValue.

– None of these methods take an argument.

 int i = integerObject.intValue();

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 9/10 46

Automatic Boxing and Unboxing
Starting with version 5.0, Java can automatically do boxing and unboxing for you.

• Boxing:

Integer integerObject = 42;

 rather than:

Integer integerObject = new Integer(42);

• Unboxing:

 int i = integerObject;

 rather than:

int i = integerObject.intValue();

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

