
CMSC 202H

Generics

Fall 2011 (Honors) 2

Generalized Code

 One goal of OOP is to provide the ability to
write reusable, generalized code.

 Polymorphic code using base classes is
general, but restricted to a single class
hierarchy

 Generics is a more powerful means of
writing generalized code that can be used by
any class in any hierarchy represented by the
type parameter

Fall 2011 (Honors) 3

Motivating Example: Containers

 Almost all programs require that objects be stored

somewhere while they are being used

 A container is a class used to hold objects in some

meaningful arrangement

 Generics provide the ability to write generalized

containers that can hold any kind of object.

 Yes, arrays can hold any kind of object, but a container is

more flexible. Different types of containers can arrange the

objects they hold in different ways.

Fall 2011 (Honors) 4

Simple Container

The container class below models a prison cell used to
hold a pickpocket.

public class Cell1

{

 private PickPocket prisoner;

 public Cell1(PickPocket p) { prisoner = p; }

 public PickPocket getPrisoner() { return prisoner; }

}

This class is not very useful or reusable since it can only
hold pick pockets.

Fall 2011 (Honors) 5

A More General Cell

By using the Java Object class, we can use our cell to
hold any kind of criminal (why?)

 public class Cell2

 {

 private Object prisoner;

 public Cell2(Object p) { prisoner = p; }

 public Object getPrisoner() { return prisoner; }

 }

But this approach can lead to some interesting
code

Fall 2011 (Honors) 6

Cell2 Example
public class Cell2 {

 private Object prisoner;

 public Cell2(Object p) { prisoner = p; }

 public Object getPrisoner() { return prisoner; }

}

--

public class Cell2Demo {

 public static void main (String[] args)

 {

 // put a pickpocket into a new cell

 Cell2 cell2 = new Cell2(new PickPocket());

 // remove the prisoner, but now he’s a Thief!?

 Thief thief = (Thief)cell2.getPrisoner();

 // rest of main

 }

}

Fall 2011 (Honors) 7

One Type per Container

 Using generics we specify the one type of

object that our container holds, and use the

complier to enforce that specification.

 The type of object held in our container is

specified by a type_parameter

Fall 2011 (Honors) 8

Class Definition with a Type Parameter

 A class that is defined with a parameter for a type is
called a generic class or a parameterized class
 The type parameter is included in angular brackets after

the class name in the class definition heading

 Any non-keyword identifier can be used for the type
parameter, but by convention, the parameter starts with an
uppercase letter

 The type parameter can be used like other types used in
the definition of a class

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2011 (Honors) 9

Generic Cell

public class Cell3<T>

{

 private T prisoner;

 public Cell3(T p) { prisoner = p; }

 public T getPrisoner() { return prisoner; }

}

 A class definition with a type parameter is stored in

a file and compiled just like any other class

 Once a parameterized class is compiled, it can be

used like any other class

 However, the class type plugged in for the type parameter

must be specified before it can be used in a program

Fall 2011 (Honors) 10

Generic Cell Example
public class Cell3<T> {

 private T prisoner;

 public Cell3(T p) { prisoner = p; }

 public T getPrisoner() { return prisoner; }

}

public class Cell3Demo {

 public static void main (String[] args)

 {

 // define a cell for PickPockets

 Cell3<PickPocket> ppCell =

 new Cell3<PickPocket>(new PickPocket());

 // define a cell for thieves

 Cell3<Thief> tCell = new Cell3<Thief>(new Thief());

 // compiler error if we remove a Thief from PickPocket Cell

 Thief thief = (Thief)ppCell.getPrisoner();

 }

}

Fall 2011 (Honors) 11

Using the ArrayList Class

Originally, we said:

…

 An ArrayList is created and named in the same way

as object of any class:
ArrayList aList = new ArrayList();

(Note that what we are teaching here is an obsolete, simplified form

of ArrayList you can use for now; for documentation, see:
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html.

Later, we will learn the proper form, after covering Generics.)

…

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

Fall 2011 (Honors) 12

Using the Generic ArrayList Class

Actually:

 An ArrayList is created and named in the same

way as object of any class, except that it is actually

a generic class, for which you specify a base type,

as follows:

ArrayList<BaseType> aList =

 new ArrayList<BaseType>();

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 13

Creating an ArrayList

 So, to instantiate a generic ArrayList to store

objects of the base type String with an initial

capacity of 20 items:

ArrayList list = new ArrayList (20);

 Note that the base type of an ArrayList is specified

as a type parameter

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

ArrayList<String> list = new ArrayList<String>(20);

Fall 2011 (Honors) 14

ArrayList code Example
// Note the use of Integer, rather than int

public static void main(String[] args)

{

 ArrayList<Integer> myInts = new ArrayList<Integer>(25);

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < 10; k++)

 myInts.add(3 * k);

 myInts.set(6, 44);

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < myInts.size(); k++)

 System.out.print(myInts.get(k) + “, “);

}

// output

Size of myInts = 0

Size of myInts = 10

0, 3, 6, 9, 12, 15, 44, 21, 24, 27,

Fall 2011 (Honors) 15

Pitfall: A Generic Constructor Name Has No Type

Parameter

 Although the class name in a parameterized class definition has a type
parameter attached, the type parameter is not used in the heading of
the constructor definition

public Cell3()

 A constructor can use the type parameter as the type for a parameter of
the constructor, but in this case, the angular brackets are not used

public Cell3(T prisoner);

 However, when a generic class is instantiated, the angular
brackets are used

Cell3<Thief> tCell = new Cell3<Thief>(new Thief());

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 16

Pitfall: A Primitive Type Cannot be Plugged in for a

Type Parameter

 The type plugged in for a type parameter

must always be a reference type

 It cannot be a primitive type such as int,

double, or char

 However, now that Java has automatic boxing, for

wrapper classes this is not a big restriction

 Note: reference types can include arrays

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 17

Pitfall: A Type Parameter Cannot Be Used Everywhere

a Type Name Can Be Used

 Within the definition of a parameterized class, there
are places in the class’s methods where an ordinary
class name would be allowed, but a type parameter
is not allowed

 In particular, the type parameter cannot be used in
simple expressions using new to create a new
object
 For instance, the type parameter cannot be used as a

constructor name or like a constructor:

T object = new T();

T[] a = new T[10];

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 18

Pitfall: An Instantiation of a Generic Class Cannot be

an Array Base Type

 Arrays such as the following are illegal:

Cell3<Thief>[] a = new Cell3<Thief>[10];

 Although this is a reasonable thing to want to do, it is

not allowed given the way that Java implements

generic classes

 Use an ArrayList instead

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 19

The Commonly Used Generic Ordered

Pair Class (1 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 20

A Generic Ordered Pair Class (2 of 4)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2011 (Honors) 21

A Generic Ordered Pair Class (3 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 22

A Generic Ordered Pair Class (4 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 23

Using Our Ordered Pair Class

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 24

A Class Definition Can Have More Than One Type

Parameter

 A generic class definition can have any

number of type parameters

 Multiple type parameters are listed in angular

brackets just as in the single type parameter case,

but are separated by commas

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2011 (Honors) 25

Multiple Type Parameters (1 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 26

Multiple Type Parameters (2 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 27

Multiple Type Parameters (3 of 4)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2011 (Honors) 28

Multiple Type Parameters (4 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 29

Using TwoTypePair (1 of 2)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2011 (Honors) 30

Using TwoTypePair (2 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 31

Bounds for Type Parameters

 Sometimes it makes sense to restrict the possible
types that can be plugged in for a type parameter T:

 This is called “placing bounds on a type parameter”

 A bound on a type may be a class name

 With class bounds, only the bounding class or any
of its descendent classes may be plugged in for the
type parameters
public class ExClass<T extends Class1>

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 32

Generics and Hierarchies

 What if we want a somewhat specialized container
that assumes the objects it holds are part of a
hierarchy so that the container code can assume the
existence of a particular method? Let’s look at
Animals, Dogs, and Cats

class Animal { public void speak(){...} ... }

class Dog extends Animal {...}

class Cat extends Animal {...}

We would like to create a container named Zoo to hold some animals that
speak.

Fall 2011 (Honors) 33

Zoo<T>

 If we define the Zoo like this
 public class Zoo< T >

we’ll get a compiler error when we try to
invoke the speak() method. Not all classes
provide a method called speak(). Only
Animals provide speak().

The solution is to place a bounds on T. The
Zoo can only contain Animals or any type
that inherits from Animal.

 public class Zoo<T extends Animal>

The phrase T extends Animal means “Animal or any
subtype of Animal”

Fall 2011 (Honors) 34

Interface Bounds for Type Parameters
 Other times, it makes sense to restrict the

possible types that can be plugged in for a
type parameter T to a particular interface
 For instance, to ensure that only classes that

implement the Comparable interface are plugged
in for T, define a class as follows:
public class RClass<T extends Comparable<T>>

 "extends Comparable<T>" serves as a bound on the
type parameter T.

 Any attempt to plug in a type for T which does not
implement the Comparable interface will result in a
compiler error message

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 35

Bounded Example

// Pair container, but only for those classes that

// implement the Comparable interface

public class Pair<T extends Comparable<T> >

{

 private T first;

 private T second;

 public T max()

 {

 if (first.compareTo(second) <= 0)

 return second;

 else return first;

 }

 // remaining Pair<T> code

}

Fall 2011 (Honors) 36

Generic Sorting
We can now implement sorting functions that can be used for any class (that

implements Comparable). The familiar bubble sort is shown below.

public class Sort

{

 public static <T extends Comparable<T>>

 void bubbleSort(T[] a)

 {

 for (int i = 0; i< a.length - 1; i++)

 for (int j = 0; j < a.length -1 - i; j++)

 if (a[j+1].compareTo(a[j]) < 0)

 {

 T tmp = a[j];

 a[j] = a[j+1];

 a[j+1] = tmp;

 }

 }

}

Syntax Rules on Type Bounds

 You may specify more than one bounds on a type

parameter

 A bounds expression may contain multiple

interfaces, but only one class

 If you have both class and interface bounds, the

class must come first in the list

Fall 2011 (Honors) 37

Fall 2011 (Honors) 38

Generics and Hierarchy

Let’s revisit the Animals hierarchy:

 Each animal has a weight and a name. Let’s say two Dogs
(or two Cats) are the equal if they have the same name and
weight.

class Animal { private String name; private int weight; ...}

class Dog extends Animal implements Comparable<Dog>{ ... }

class Cat extends Animal implements Comparable<Cat>{ ... }

 Since Dog implements comparable<Dog> it’s clear you can
compare Dogs with Dogs, but not with Cats

 We can use our bubbleSort method with Dogs or with Cats

Fall 2011 (Honors) 39

Sorting Dogs

public class DogSort

{

 public static void main(String[] args)
{

 // create an array of Dogs
 Dog[] dogs = new Dog[42];

 // put some dogs in the array

 //

 // sort the dogs
 Sort.bubbleSort(dogs);

 // rest of main

 }

}

Fall 2011 (Honors) 40

Generics and Hierarchies

What happens if we want to sort a class in an inheritance
hierarchy, but some ancestor of the class implements
comparable, and not the class itself?

But suppose we wanted compare all Animals using only
their weight. The class definitions would look
something like this

class Animal implements Comparable<Animal> { ...}

class Dog extends Animal { ... }

class Cat extends Animal { ... }

Since Animal implements comparable, any two Animals can be
compared (albeit only by weight).

The problem is now that we can’t use bubbleSort to sort an array of
Dogs because Dog doesn’t explicitly implement Comparable (it’s
inherited from Animal)

Fall 2011 (Honors) 41

New bubbleSort
The solution is to use a “wildcard” when defining bubbleSort
public class Sort

{

 public static <T extends Comparable<? super T>>

 void bubbleSort(T[] a)

 {

 for (int i = 0; i< a.length - 1; i++)

 for (int j = 0; j < a.length -1 - i; j++)

 if (a[j+1].compareTo(a[j]) < 0)

 {

 T tmp = a[j];

 a[j] = a[j+1];

 a[j+1] = tmp;

 }

 }

}

? super T is read as “any supertype of T”. Now, because Dog extends
Animal which implements Comparable, bubbleSort can be used with an
array of Dogs as before.

Fall 2011 (Honors) 42

Pitfall: A Generic Class Cannot Be an Exception Class

 It is not permitted to create a generic class
with Exception, Error, Throwable, or
any descendent class of Throwable

 A generic class cannot be created whose objects
are throwable
public class GEx<T> extends Exception

 The above example will generate a compiler error
message

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Fall 2011 (Honors) 43

Tip: Generic Interfaces

 An interface can have one or more type

parameters

 The details and notation are the same as

they are for classes with type parameters

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 44

Generic Methods

 When a generic class is defined, the type parameter
can be used in the definitions of the methods for that
generic class

 In addition, a generic method can be defined that
has its own type parameter that is not the type
parameter of any class
 A generic method can be a member of an ordinary class or

a member of a generic class that has some other type
parameter

 The type parameter of a generic method is local to that
method, not to the class

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 45

Generic Methods
 The type parameter must be placed (in angular

brackets) after all the modifiers, and before the
returned type

public class Utility {

...

 public static <T> T getMidPoint(T[] array)

 { return array[array.length / 2]; }

 public static <T> T getFirst(T[] a)

 { return a[0]; }

 ...

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 46

Generic Methods

 When one of these generic methods is

invoked, the method name is prefaced with the

type to be plugged in, enclosed in angular

brackets
String s =

 Utility.<String>getMidPoint(arrayOfStrings);

double first =

 Utility.<Double>getFirst(arrayOfDoubles);

Fall 2011 (Honors) 47

Inheritance with Generic Classes

 A generic class can be defined as a derived class of
an ordinary class or of another generic class
 As in ordinary classes, an object of the subclass type would

also be of the superclass type

 Given two classes: A and B, and given G: a generic
class, there is no relationship between G<A> and
G

 This is true regardless of the relationship between class A
and B, e.g., if class B is a subclass of class A

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 48

A Derived Generic Class (1 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

In this example UnorderedPair overrides equals() that was inherited from Pair

Fall 2011 (Honors) 49

A Derived Generic Class (Part 2 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 50

Using UnorderedPair (Part 1 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Fall 2011 (Honors) 51

Using UnorderedPair (Part 2 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

