
CMSC 202

Exceptions

2nd Lecture

11/2011 2

Methods may fail for multiple reasons
public class BankAccount {

 private int balance = 0, minDeposit = 500;

 public BankAccount() {

 balance = 0;

 }

 public int getBalance() { return balance; }

 // precondition – amount must be nonnegative an more than min

 // throws an exception if amount is negative

 // postcondition – balance updated

 public int deposit(int amt) {

 if (amt < 0)

 throw new DepositNegativeException();

 if (amt < minDeposit)

 throw new DepositTooSmallException();

 balance += deposit;

 }

11/2011 3

Multiple catch Blocks

 A try block can call a method that potentially

throws any number of exception values, and they

can be of differing types

 In any one execution of a try block, at most one exception

can be thrown (since a throw statement ends the execution
of the try block)

 However, different types of exception values can be thrown
on different executions of the try block

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 4

Multiple catch Blocks

 Each catch block can only catch values of the

exception class type given in the catch block

heading

 Different types of exceptions can be caught by
placing more than one catch block after a try

block

 Any number of catch blocks can be included, but they

must be placed in the correct order

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 5

Multiple catch Blocks
public class DepositExample2 {

 public static void main(String[] args) {

 BankAccount myAccount = new BankAccount();

 Scanner input = new Scanner(System.in);

 System.out.print(“Enter deposit amount: “);

 int amt = input.nextInt();

 try {

 myAccount.deposit(amt);

 System.out.println(“New Balance = “ + myAccount.getBalance());

 }

 catch (DepositNegativeException dne) {

 // code that “handles” a negative deposit

 }

 catch (DepositTooSmallException dts) {

 // code that “handles” a deposit less than the minimum

 }

 System.out.println (“Have a nice day”);

}

11/2011 6

 Catch the More Specific Exception First

 When catching multiple exceptions, the order
of the catch blocks is important

 When an exception is thrown in a try block, the
catch blocks are examined in order

 The first one that matches the type of the
exception thrown is the one that is executed

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 7

 Catch the More Specific Exception First
public class DepositExample2 {

 public static void main(String[] args) {

 BankAccount myAccount = new BankAccount();

 Scanner input = new Scanner(System.in);

 System.out.print(“Enter deposit amount: “);

 int amt = input.nextInt();

 try {

 myAccount.deposit(amt);

 System.out.println(“New Balance = “ +
 myAccount.getBalance());

 }

 catch (Exception e) // OOOPS!!

 {

 // code to handle an exception

 }

 catch (DepositNegativeException dne) {

 // code that “handles” a negative deposit

 }

 catch (DepositTooSmallException dts) {

 // code that “handles” a deposit less than the minimum

 }

 System.out.println (“Have a nice day”);

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 8

Catch the More Specific Exception First

 Because a DepositNegativeException and

DepositTooSmallException are types of

Exception, all exceptions will be caught by the first

catch block before ever reaching the second or

third block

 The catch blocks for DepositNegativeException

and DepositTooSmallException will never be

used!

 For the correct ordering, simply put the catch block

for Exception last.

11/2011 9

Declaring Exceptions in a throws Clause

 If a method can throw an exception but does not
catch it, it must provide a warning
 This warning is called a throws clause

 The process of including an exception class in a throws
clause is called declaring the exception

throws AnException //throws clause

 public int deposit(int amt) throws DepositNegativeException,

 DepositTooSmallException

 {

 if (amt < 0)

 throw new DepositNegativeException();

 if (amt < minDeposit)

 throw new DepositTooSmallException();

 balance += deposit;

 }

 Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 10

The Catch or Declare Rule

 Most ordinary exceptions that might be thrown
within a method must be accounted for in one of
two ways:

1. The code that can throw an exception is placed within a
try block, and the possible exception is caught in a
catch block within the same method

2. The possible exception can be declared at the start of the
method definition by placing the exception class name in
a throws clause

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 11

Checked and Unchecked Exceptions

 Exceptions that are subject to the catch or declare rule
are called checked exceptions

 The compiler checks to see if they are accounted for
with either a catch block or a throws clause

 The classes Throwable, Exception, and all
descendants of the class Exception (with the
exception of RuntimeException and its subclasses)
are checked exceptions

 All other exceptions are unchecked exceptions

 The class Error and all its descendant classes are
called error classes

 Error and RuntimeException classes are not subject to
the Catch or Declare Rule

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 12

Hierarchy of Throwable Objects

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 13

Exceptions to the Catch or Declare Rule

 Checked exceptions must follow the Catch or
Declare Rule
 Programs in which these exceptions can be thrown

will not compile until they are handled properly

 Unchecked exceptions are exempt from the
Catch or Declare Rule
 Programs in which these exceptions are thrown

simply need to be corrected, as they result from some
sort of error

 Even if an exception is unchecked, you can still
catch if if you want

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 14

Runtime Exceptions

 Runtime exceptions are

 Unchecked

 Probably a bug in your program

 Referencing a null pointer

 Array index out of bounds

 Thrown automatically by Java

11/2011 15

What Happens If an Exception is Never Caught?

 If every method up to and including the main method
simply includes a throws clause for an exception, that
exception may be thrown but never caught

 In a GUI program (i.e., a program with a windowing
interface), nothing happens - but the user may be left in an
unexplained situation, and the program may be no longer
be reliable

 In non-GUI programs, this causes the program to terminate
with an error message giving the name of the exception
class

 Every well-written program should eventually catch every
exception by a catch block in some method

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 16

The finally Block
 The finally block contains code to be executed whether

or not an exception is thrown in a try block
 If it is used, a finally block is placed after a try block

and its following catch blocks

try

{ . . . }

catch(ExceptionClass1 e)

{ . . . }

 . . .

catch(ExceptionClassN e)

{ . . . }

finally

{

 CodeToBeExecutedInAllCases

}

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 17

The finally Block

 If the try-catch-finally blocks are inside a method
definition, there are three possibilities when the code is run:

1. The try block runs to the end, no exception is thrown, and the
finally block is executed

2. An exception is thrown in the try block, caught in one of the
catch blocks, and the finally block is executed

…but most importantly:

3. An exception is thrown in the try block, there is no matching
catch block in the method, the finally block is executed,
and then the method invocation ends and the exception object
is thrown to the enclosing method

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 18

When to use a finally block

 The finally block should contain code that you

always want to run whether or not an

exception occurred.

 Generally the finally block contains code to

release resources other than memory

 Close files

 Close internet connection

 Clear the screen

11/2011 19

Exception Controlled Loops
 Sometimes it is better to simply loop through an action again

when an exception is thrown, as follows. We’ll see a real
example next.

boolean done = false;

while (! done)

{

 try

 {

 CodeThatMayThrowAnException

 done = true;

 }

 catch (SomeExceptionClass e)

 {

 SomeMoreCode

 }

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 20

Exceptions with the Scanner Class

 The nextInt method of the Scanner class can be
used to read int values from the keyboard

 However, if a user enters something other than a
well-formed int value, an
InputMismatchException will be thrown
 Unless this exception is caught, the program will end with

an error message

 If the exception is caught, the catch block can give code
for some alternative action, such as asking the user to
reenter the input

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 21

The InputMismatchException

 The InputMismatchException is in the standard
Java package java.util
 A program that refers to it must use an import statement,

such as the following:
import java.util.InputMismatchException;

 It is a descendent class of RuntimeException

 Therefore, it is an unchecked exception and does not have
to be caught in a catch block or declared in a throws
clause

 However, catching it in a catch block is allowed, and can
sometimes be useful

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 22

An Exception Controlled Loop (1 of 3)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 23

An Exception Controlled Loop (2 of 3)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 24

An Exception Controlled Loop (3 of 3)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

