
CMSC 202

Exceptions

11/2011 2

Error Handling

 In the ideal world, all errors would occur when
your code is compiled. That won’t happen.

 Errors which occur when your code is running
must be either:
A. handled by the originator (detector) of the error, who

doesn’t have enough context to know what response
is appropriate; OR

B. managed through be some mechanism that allows
the detector to pass information back to the recipient
of the error, who will know how to deal with the error.

11/2011 3

Error Handling via Return Values

 In languages like C, error handling was usually by

convention. Programmers simply agreed on some

standard way to report errors.

 Usually a function returned a value which had to be

checked by the caller

 Not part of the language

 Completely unenforceable

 Programmers tended to ignore them

 Did you even know that printf() has a return value?

 Checking all return values would result in unreadable code

11/2011 4

A Tradition-style Example
public class BankAccount {

 public static final in DEPOSIT_NEGATIVE = -1;

 public static final in DEPOSIT_OK = 0;

 private int balance = 0;

 public BankAccount(int minDeposit, int maxWithDraw) {

 this.minDeposit = minDeposit;

 this.maxWithDraw = maxWithDraw;

 }

 public int deposit(int amt) {

 if (amt < 0) return DEPOSIT_NEGATIVE;

 balance += amt;

 return DEPOSIT_OK;

 }

 // the rest of the BankAccount class follows

11/2011 5

Bank Account Deposit – cont’d

public class DepositExample {

 public static void main(String[] args) {

 BankAccount myAccount = new BankAccount(100, 10000);

 … // Add code to read user’s deposit request into “amt”

 int status = myAccount.deposit(amt);

 if (status == BankAccount.DEPOSIT_NEGATIVE)

 {

 // do something appropriate

 } else // status == BankAccount.DEPOSIT_OK

 // do the good stuff

 }

 }

}

Issues with Traditional Error Handling

 What if we also wanted to check values that

were too large?

 What about new error types that we only run

into later?

 What if we need to pass back complex

information about the exact nature of the

error?

 How to handle growing complexity and

confusion of code?

11/2011 6

11/2011 7

Better Error Handling

 Separation of error detection
from error handling
 Class implementer detects the error

 Class user decides what to do about the error

 Exit the program

 Output a message and continue the program

 Retry the function that had the error

 Ask the user what to do

 Many other possibilities

11/2011 8

Better Error Handling

 Separation of error detection
from error handling (cont.)
 Language provides mechanism to automate facilitate

error-handling, and enforces standardized
communication and flow control between detector and
handler

 Reduces complexity of code

 Code that works when nothing unusual happens is
separated from the code that handles exceptional
situations

11/2011 9

“Exceptional”

 What’s an exceptional situation?

 As defined in the Sun Java tutorial:
 An exception is an event, which occurs during the

execution of a program, that disrupts the normal flow of the
program's instructions.

 The program encounters a situation it doesn’t know
how to handle

 Different than a “normal problem”
 Program has enough information to know what to do next

11/2011 10

Exception Handling

 Removes error handling code from the code that
caused the error

 Makes it possible to catch all kinds of errors, errors
of a certain type, or errors of related types

 Is used in situations in which the system cannot
recover.

 Is used when the error will be dealt with by a
different part of the program (i.e., different scope)
from that which detected the error

 Can be slow, but we don't care because errors
occur very infrequently

11/2011 11

Introduction to Exception Handling

 Programmer-defined code (or Java library software)

utilizes some mechanism to signal when something

unusual happens

 This is called throwing an exception

 In another place in the program, the programmer

must provide code that deals with the exceptional

case

 This is called handling the exception

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 12

try-throw-catch

 The basic way of handling exceptions in Java

consists of the
 try-throw-catch trio

11/2011 13

try-throw-catch example
Scanner in = new Scanner(System.in);

System.out.println(“Enter Amt: “);

try {

 int amt = in.nextInt();

 if (amt < 0)

 throw new Exception(“Negative value was input”);

 System.out.println (“Thanks for your deposit”);

 // addl. code that can assume the amt is not negative

}

catch(Exception e)

{

 // do something about the exception

}

System.out.println(“Have a nice day”);

11/2011 14

The try & catch blocks

 Code which might throw an exception is placed
inside a try block

 The try block contains the code for the basic

algorithm

 It tells what to do when everything goes smoothly

 It is called a try block because it "tries" to execute

the case where all goes as planned

 Code which handles the exception is placed
into a catch block

 Catch block is separate from, and immediately

follows, the try block

Non-local Throws

 The throw statement does not have to be

lexically directly inside the body of a try

block

 If not in a try block, the throw propagates out of

the method into the calling method

 Can pop up out of multiple nested method

invocations

 Similar to a “non-local goto”

11/2011 15

11/2011 16

throw Example
Code inside a class method detects an unrecoverable error and throws an exception

object.

public class BankAccount {

 private int balance;

 public BankAccount() {

 balance = 0;

 }

 public int getBalance() { return balance; }

 // precondition – amount must be nonnegative

 // throws an exception if amount is negative

 // postcondition – balance updated

 public int deposit(int amt) {

 if (amt < 0)

 throw new Exception(“Deposit is Negative”);

 balance += deposit;

 }

11/2011 17

Original Bank Account Deposit Code
public class DepositExample {

 public static void main(String[] args) {

 BankAccount myAccount = new BankAccount(100, 10000);

 … // Add code to read user’s deposit request into “amt”

 int status = myAccount.deposit(amt);

 if (status == BankAccount.DEPOSIT_NEGATIVE) {

 // code that “handles” a negative deposit

 System.out.println(“Error: Deposit is negative”);

 }

 else { // status == BankAccount.DEPOSIT_OK

 // do the good stuff

 System.out.println(“New Balance = “ +

 myAccount.getBalance());

 }

 System.out.println(“GoodBye”);

 }

}

11/2011 18

Better Bank Account Deposit Code
public class DepositExample {

 public static void main(String[] args) {

 BankAccount myAccount = new BankAccount(100, 10000);

 … // Add code to read user’s deposit request into “amt”

 try {

 myAccount.deposit(amt);

 System.out.println(“New Balance = “ +

 myAccount.getBalance());

 }

 catch (Exception e)

 {

 // code that “handles” a negative deposit

 System.out.println(e.getMessage());

 }

 System.out.println(“GoodBye”);

}

11/2011 19

try-throw-catch Mechanism

 When an exception is thrown, the execution of the
surrounding try block is stopped

 Normally, the flow of control is transferred to
another portion of code known as the catch block

 If there is no surrounding try block, abort the

method, and look for a try block in the caller

 The value thrown is the argument to the throw

operator, and is always an object of some exception

class

 The execution of a throw statement is called

throwing an exception

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 20

try-throw-catch Mechanism

 When an exception is thrown, the catch block
begins execution
 The catch block has one parameter

 The exception object thrown is plugged in for the catch
block parameter

 The execution of the catch block is called catching
the exception, or handling the exception
 Whenever an exception is thrown, it should ultimately be

handled (or caught) by some catch block

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 21

try-throw-catch Mechanism

catch(Exception e) { . . . }

 The identifier e in the above catch block heading is called the
catch block parameter

 The catch block parameter does two things:

1. It specifies the type of thrown exception object that the catch
block can catch (e.g., an Exception class object above)

2. It provides a name (for the thrown object that is caught) on
which it can operate in the catch block

– Note: The identifier e is often used by convention, but any
non-keyword identifier can be used

 So, it is like an embedded method definition

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 22

try-throw-catch Mechanism

 When a try block is executed, two things

can happen:

1. No exception is thrown in the try block

– The code in the try block is executed to the end of the

block

– The catch block(s) is (are) skipped

– The execution continues with the code placed after the
catch block(s)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 23

try-catch Control Flow

try

{

 // code that might throw an Exception

 // more code

}

catch(Exception e)

{

 // handle error here

}

// Method continues here

Case 1

The try block does NOT

throw an Exception.

When the try block

completes, the catch block

is skipped

11/2011 24

try-throw-catch Mechanism

2. An exception is thrown in the try block and
caught in the catch block
– The rest of the code in the try block is skipped

– Control is transferred to a following catch block (in
simple cases)

– The thrown object is plugged in for the catch block
parameter

– The code in the catch block is executed

– The code that follows that catch block is executed
(if any)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 25

try-catch Control Flow

try

{

 throw new Exception(“message”);

 // more code

}

catch(Exception e)

{

 // handle error here

}

// Method continues here

Case 2

The try block

throws an Exception.

The try block terminates,

the catch block executes,

code following the catch

block executes

11/2011 26

Exception Classes
 The Java language defines a basic Exception

class
 There are more exception classes in the standard Java

libraries

 New exception classes can be defined like any other class

 All predefined exception classes have the following
properties:
 There is a constructor that takes a single argument of type
String

 The class has an accessor method getMessage that can
recover the string given as an argument to the constructor
when the exception object was created

 All programmer-defined classes should have the
same properties

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 27

Exception Classes from Standard Packages

 The predefined exception class Exception

is the root class for all exceptions

 Every exception class is a descendent class of the
class Exception

 Although the Exception class can be used

directly in a class or program, it is most often used

to define a derived class

 The class Exception is in the java.lang

package, and so requires no import statement

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 28

Using the getMessage Method

. . . // method code

try

{

 . . .

 throw new Exception(StringArgument);

 . . .

}

catch(Exception e)

{

 String message = e.getMessage();

 System.out.println(message);

 System.exit(0);

} . . .

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 29

Using the getMessage Method

 Every exception has a String instance variable
that contains some message
 This string typically identifies the reason for the exception

 In the previous example, StringArgument is an
argument to the Exception constructor

 This is the string used for the value of the string
instance variable of exception e
 Therefore, the method call e.getMessage() returns this

string

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 30

Defining Exception Classes

 A throw statement can throw an exception object of

any exception class

 Instead of using a predefined class, exception

classes can be programmer-defined

 Two main motivations for creating your own
Exception subclass:

 A different type of exception can be defined to identify each

different exceptional situation

 These can be tailored to carry the precise kinds of
information needed in the catch block

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 31

Defining Exception Classes
 Every exception class to be defined must be a derived

class of some already defined exception class
 It can be a derived class of any exception class in the

standard Java libraries, or of any programmer defined
exception class

 Constructors are the most important members to define in
an exception class
 They must behave appropriately with respect to the

variables and methods inherited from the base class

 Often, there are no other members, except those inherited
from the base class

 The following exception class performs these basic tasks
only

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 32

Exception Object Characteristics

 The two most important things about an
exception object are its type (exception class)
and the message it carries

 The message is sent along with the exception
object as an instance variable

 This message can be recovered with the accessor
method getMessage, so that the catch block can
use the message

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 33

Preserve getMessage

 For all predefined exception classes, getMessage returns
the string that is passed to its constructor as an argument

 Or it will return a default string if no argument is used with
the constructor

 This behavior must be preserved in all programmer-defined
exception class

 A constructor must be included having a string parameter
whose body begins with a call to super

 The call to super must use the parameter as its argument

 A no-argument constructor must also be included whose
body begins with a call to super

 This call to super must use a default string as its argument

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 34

Programmer-Defined Exception Class Guidelines

 Exception classes may be programmer-defined, but every such
class must be a derived class of an already existing exception
class

 The class Exception can be used as the base class, unless
another exception class would be more suitable

 At least two constructors should be defined, sometimes more

 The exception class should allow for the fact that the method
getMessage is inherited

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 35

A Programmer-Defined Exception Class

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 36

Tip: An Exception Class Can Carry a

Message of Any Type: int Message

 An exception class constructor can be defined
that takes an argument of another type
 It would stores its value in an instance variable

 It would need to define accessor methods for this
instance variable

 A programmer defined exception class may
include any information that might be helpful to
the recipient

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2011 37

An Exception Class with an int Message

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2011 38

Constructors and Exceptions

Up until now we’ve had no way to recover if a bad parameter

was passed to a constructor. We usually just exited the

program with System.exit(). A better way is to throw an

exception

public class BankAccount {

 private int balance;

 public BankAccount(int startingBalance) {

 if (startingBalance < 0)

 throw new BadNumberException(startingBalance);

 balance = startingBalance;

 }

}

11/2011 39

trying constructors
public class BankAccountDemo {

 public static void main(String[] args) {

 BankAccount myAccount; // outside the try block???

 try {

 Scanner in = new Scanner(System.in);

 System.out.print(“Input starting balance: “);

 int startBalance = in.nextInt();

 myAccount = new BankAccount(startBalance);

 // more of the good stuff here

 }

 catch (BadNumberException bne)

 {

 // handle the bad input

 System.out.println(“Deposits must be postive”);

 Sysetem.out.println(“You entered “ +
 bne.getBadNumber());

 }

 System.out.println(“good bye “);

 }

}

