
Classes and Objects: 

Encapsulation 

 

CMSC 202H 

(Honors Section) 



Encapsulation for Control 

• We said we will use the term encapsulation in 

two different ways in this class (and in the text) 

• Definition #1: "Inclusion" (“bundling"):  

• bundling of structure and function 

• Covered in lecture on “Object Design” 

 

 

• Definition #2: “Exclusion” (“access control”) 

• Strict, explicit control of how our objects can be used 

• This will be focus of this lecture 

 

Version 9/11 2 



Version 9/11 3 

Types of Programmers 

• Class creators 

– those developing new classes 

– want to build classes that expose the minimum 

interface necessary for the client program and 

hide everything else 

• Client programmers 

– those who use the classes (a term coined by 

Scott Meyer) 

– want to create applications by using a collection 

of interacting classes 



Version 9/11 4 

OOP Techniques 

• Class creators achieve their goal through 

encapsulation. 
 

Encapsulation: 
 

• Combines data and operations into a single entity 

(a class) 

• Provides proper access control 

• Focuses on implementation 

• Achieved through information hiding 

(abstraction) 



Version 9/11 5 

The Value of Encapsulation 

• Client programmers do not need to know 

how the class is implemented, only how to 

use it. 

• The information the client programmer 

needs to use the class is kept to a 

minimum. 

• Class implementation may be changed 

with no impact on those who use the 

class. 



Version 9/11 6 

Access Control 

• Encapsulation is implemented using access 
control. 
– Separates interface from implementation 

– Provides a boundary for the client programmer 
 

• Visible parts of the class (the interface) 
– can be used and/or changed by the client 

programmer. 
 

• Hidden parts of the class (the implementation) 
– Can be changed by the class creator without 

impacting any of the client programmer’s code 

– Can’t be corrupted by the client programmer 



Version 9/11 7 

Access Control in Java 

• Visibility modifiers provide access 

control to instance variables and methods. 
 

– public visibility - accessible by everyone, in 

particular the client programmer 
 

• A class’ interface is defined by its public methods. 
 

– private visibility - accessible only by the 

methods within the class 
 

– Two others—protected and [package]—later 



Version 9/11 8 

Date2 Class 
In this new date class, the instance variables have been labeled 

private. 
 

public class Date2 

{ 

 private String month; 
private int day; 

   private int year; 

 

 public String toString( ) 

 { 

  return month + “ “ + day + “ “ + year; 

 } 

 

  

 

 // setDate and monthString same as Date1 class 

} 

Any Date2 class method may use the class’ private instance variables. 



Version 9/11 9 

Access Control Example 
Date1 class - public instance variables were used 

Date2 class - private instance variables are now used 
 

public class Date2Demo 

{ 

 public static void main( String[ ] args ) 
{ 
 Date2 myDate = new Date2( ); 
 
 myDate.month = “July”; // compiler error 
 myDate.day = 4;  // compiler error 

  myDate.year = 1950; // compiler error 

 

  myDate.setDate( 7, 4, 1950 ); // OK – why? 

  System.out.println( myDate.toString( )); 

    } 

} 



Version 9/11 10 

Private Instance Variables 

• Private instance variables are only directly 
accessible within the class.  

• Private instance variables hide implementation 
details, promoting encapsulation. 

• Private instance variables are not accessible by 
the client programmer (class user). 

 

• Good programming practice: 
– Label all instance variables as private. 

– The class has complete control over how/when/if the 
instance variables are changed. 

– Instance variables primarily support class behavior. 



Version 9/11 11 

Encapsulation Summary 

• Combine methods and data in a single class. 

 

• Use private instance variables for information 

hiding.  

 

• Minimize the class’s public interface. 

 

―Keep it secret, keep it safe.‖ 



Version 9/11 12 

Accessors & Mutators 

• Class behavior may allow access to, or 
modification of, individual private instance 
variables. 
 

• Accessor method 
– retrieves the value of a private instance variable 

– conventional to start the method name with get 

• Mutator method 
– changes the value of a private instance variable 

– conventional to start the name of the method with set 
 

• Gives the client program indirect access to the 
instance variables. 



Version 9/11 13 

More Accessors and Mutators 

Question: Doesn’t the use of accessors and 

mutators defeat the purpose of making the 
instance variables private? 

Answer: No 

• The class implementer decides which instance 

variables will have accessors. 

• Mutators can: 

– validate the new value of the instance variable, and 

– decide whether or not to actually make the requested 

change. 



Version 9/11 14 

Date2 Accessor and Mutator 
public class Date2 

{ 

 private String month; 
private int day; // 1 - 31 

 private int year; // 4-digit year 

 

 // accessors return the value of private data 

 public int getDay ( ) 

 { return day; } 

 

 // mutators can validate the new value 

 public boolean setYear( int newYear ) 
{ 

  if ( 1000 <= newYear && newYear <= 9999 ) 

  { 

      year = newYear; 

      return true; 

  } 

  else // this is an invalid year 

     return false; 

 

 // rest of class definition follows 

} 



Version 9/11 15 

Accessor/Mutator Caution 

• In general you should NOT provide 

accessors and mutators for all private 

instance variables. 
 

– Recall that the principle of encapsulation is 

best served with a limited class interface. 
 

• Too many accessors and mutators lead to 

writing procedural code rather than OOP 

code. More on this later. 



Classes as Structures 

• There are two possible exceptions to the 

―make everything private‖ rule: 

– When the class is actually just a simple data 

structure 

• No hard consistency rules 

• No behaviors 

• Local use 

– When performance is critical 

• However, this tradeoff is often not worthwhile 

Version 9/11 16 



Version 9/11 17 

Private Methods 

• Methods may be private. 
 

– Cannot be invoked by a client program 

– Can only be called by other methods within 

the same class definition 

– Most commonly used as ―helper‖ methods to 

support top-down implementation of a public 

method 

 



Version 9/11 18 

Private Method Example 
public class Date2 

{ 

 private String month; 
private int day; // 1 - 31 

 private int year; // 4-digit year 

 

 // mutators should validate the new value 

 public boolean setYear( int newYear ) 
{ 

  if ( yearIsValid( newYear ) ) 

  { 

      year = newYear; 

      return true; 

  } 

  else // year is invalid 

     return false; 

 

 } 

 // helper method - internal use only 

 private boolean yearIsValid( int year ) 

 { 

  return 1000 <= year && year <= 9999; 

 } 

} 


