
Classes and Objects: 

Object Creation and Constructors 

CMSC 202H (Honors Section) 

John Park 



Version 9/10 2 

Object Creation 

• Objects are created by using the operator 
new in statements such as 

  Date myDate = new Date( ); 
 

• The expression  

   new Date( )  

 invokes a special kind of method known as 
a constructor. 

• Constructors are used to 

– create objects and 

– initialize the instance variables. 



Version 9/10 3 

Constructors 

• A constructor 

– has the same name as the class it constructs 

– has no return type (not even void) 
 

• If the class implementer does not define any 

constructors, the Java compiler automatically 

creates a constructor that has no parameters. 
 

• Constructors may be (and often are) overloaded.   
 

• It’s good programming practice to always 

implement a constructor with no parameters. 



Version 9/10 4 

The (Almost) Finished Date Class 
public class Date 

{ 

 private String month; 

 private int day;  // 1 - 31 

 private int year;  //4 digits  

  

 // no-argument constructor 

 // implementer chooses the default month, day, year 

 public Date( ) 
{ 
 month = “January”; 

  day = 1; 

  year = 2007; 

  // or better yet, call setDate(1, 1, 2007); 

 } 

 // alternative constructor 

 public Date( int month, int day, int year ) 
{ 
 this.month = monthString(month) 

  this.day = day; 

  this.year = year; 

 } 

        (continued) 



Version 9/10 5 

Date Class (cont’d) 
 // another alternative constructor 

 // January 1 of the specified year 

 public Date( int newYear ) 
{ 
 this.month = monthString( 1 ) 

  this.day = 1; 

  this.year = newYear; 

 } 

 

 // a constructor which makes a copy of an existing Date object 

 // discussed in more detail later 

 public Date( Date otherDate ) 
{ 
     month = otherDate.month; 
     day = otherDate.day; 
     year = otherDate.year; 
} 

  

 // remaining Date methods such as setDate, accessors, mutators 

 // equals, toString, and stringMonth 

 

} // end of Date class  



Version 9/10 6 

Using Date Constructors 
public class DateDemo 

{ 

 public static void main( String[ ] args) 
{ 
 Date birthday = new Date( 1, 23, 1982 ); 

  String s1 = birthday.toString( );  // January 23, 1982 

  System.out.println( s1 ); 

 

  Date newYears = new Date( 2009 ); 

  String s2 = newYears.toString( ); // January 1, 2009 

  System.out.println( s2 ); 

 

  Date holiday = new Date( birthday ); 

  String s3 = holiday.toString( );  // January 23, 1982 

  System.out.println( s3 ); 

 

  Date defaultDate = new Date( ); 

  String s4 = defaultDate.toString( ); // January 1, 1000 

  System.out.println( s4 ); 

 } 

} 

 



Version 9/10 7 

this( ) Constructor 

• When several alternative constructors are 

written for a class, we can reuse code by 

calling one constructor from another. 

 

• The nested constructor is called as this( ). 

• The call to this(…) must be the very first 

statement in the calling constructor 

• You can execute other statements after 

the call to this() 

 



Constructor-chaining Designs 

• Two design paradigms: 

– Complete base-level constructor: 

• Complex, full-functioned base-level constructor; 

Plus: 

• Calling constructors, that implement “defaults” 

– Primitive base-level constructor: 

• Minimum base constructor, that just fills in “un-

defaultable” fields; 

Plus: 

• Calling constructors, that allow control of more 

fields 

Version 9/10 8 



Version 9/10 9 

Complete Base-level Constructor 
  

 // Most-general constructor, called by other constructors 

 public Date( int month, int day, int year ) 
{ 
 this.month = monthString(month) 

  this.day = day; 

  this.year = year; 

 } 

 // no-argument constructor 

 // implementer chooses the default month, day, year 

 public Date( ) 
{ 
 this( 1, 1, 2007 ); 

 } 

 

 // alternative constructor: again, different defaults 

 // January 1 of the specified year 

 public Date( int newYear ) 

{ 

 this ( 1, 1, newYear ); 

} 

 

 



Version 9/10 10 

Primitive Base-level Constructor 
  

 // no-argument constructor 

 // Simplest version—just implements default values 

 public Date( ) 
{ 
 month = “January”; 

  day = 1; 

  year = 2007; 

 } 

 

 // alternative constructor: allows more control 

 public Date( int newYear ) 

{ 

 this(); 

  year = newYear; 

} 

 

 // most elaborate version (also using „this‟ for fun) 

 public Date( int month, int day, int year ) 
{ 
 this(year); 

  this.day = day; 

  this.month = month; 

 } 

 



Version 9/10 11 

What Happens in Memory: 

The Stack and Heap 

• When your program is running, local variables are 
stored in an area of memory called the stack. 

 

• A table can be used to illustrate variables stored 
on the stack: 

 
   Var     Value 
     x      42 

      y      3.7 
 

• The rest of memory is known as the heap and is 
used for dynamically allocated “stuff.” 



Version 9/10 12 

Main Memory 

The stack grows and shrinks as needed (why?) 

The heap also grows and shrinks. (why?) 

Some of memory is unused (“free”). 

 

Stack 

 

 

Unused 

Memory 

 

Heap 

 

 



Version 9/10 13 

Object Creation 

Consider this code that creates two 

Dates: 

 Date d1, d2; 

 d1 = new Date(1, 1, 2000); 

 d2 = new Date(7, 4, 1776); 

Where are these variables and objects 

located in memory? 

Why do we care? 



Version 9/10 14 

Objects in Memory 
The statement  

 Date d1, d2;  

creates two local variables on the stack. 

 

The statements 

 d1 = new Date(1, 1, 2000); 

  d2 = new Date(7, 4, 1776); 

 

create objects on the heap.  d1 and d2 contain the memory addresses of these 
objects giving us the picture of memory shown below.  
 

d1 and d2 are called reference variables.  Reference variables which do not 
contain the memory address of any object contain the special value null. 

 

d1 

d2 

Stack Heap 

January 

1 

2000 

July 

4 

1776 



Version 9/10 15 

Why We Care (1 of 4) 

Given the previous code 
 Date d1, d2; 

 d1 = new Date(1, 1, 2000); 

 d2 = new Date(7, 4, 1776); 

 

and corresponding picture of memory  
consider the expression d1 == d2 

 

Recall that d1 and d2 contain the addresses of their respective Date objects. 
Since the Date objects have different addresses on the heap, d1 == d2 is 
false. The == operator determines if two reference variables refer to the 
same object. 
 

So how do we compare Dates for equality? 

Dates (and other objects) should implement a method named equals. To 
check if two Dates are the same, use the expression  

   d1.equals( d2 ); 

. 
 

d1 

d2 

Stack Heap 

January 

1 

2000 

July 

4 

1776 



Version 9/10 16 

Why We Care (2 of 4) 

On the other hand, consider this code and 
corresponding picture of memory 

  

 Date d1 = new Date(1, 1, 2000); 

 Date d2 = d1; 

 

Now d1 and d2 refer to the same Date object.  This is known as aliasing, is 

often unintentional, and can be dangerous. Why? 

 

If your intent is for d2 to be a copy of d1, then the correct code is 

 

Date d2 = new Date( d1 ); 

d1 

d2 

Stack Heap 

January 

1 

2000 



Version 9/10 17 

Why We Care (3 of 4) 
Consider this code and the changing picture of memory 

 

Date d1 = new Date(1, 1, 2000);  // line 1 

d1 = new Date(12, 25, 2007);  // line 2 

 

 

d1 

Stack Heap 

January 

1 

2000 
d1 

Stack Heap 

January 

1 

2000 

December 

25 

2007 

After line 1 After line 2 



Version 9/10 18 

Why We Care (4 of 4) 

• Garbage collection 

As the diagram shows, after line 2 

is executed no variable refers 

to the Date object which 

contains “January”, 1, 2000 

In C/C++, we’d consider this a “memory leak”.  In C/C++ it’s the 

programmer’s responsibility to return dynamically allocated memory 

back to the free heap. Not so in Java! 

 

Java has a built-in “garbage collector”.  From time to time Java detects  

objects that have been “orphaned” because no reference variable 

refers to them. The garbage collector automatically returns the 

memory for those objects to the free heap. 

d1 

Stack Heap 

January 

1 

2000 

December 

25 

2007 



Version 9/10 19 

Arrays with a Class Base Type 

• The base type of an array can be a class type as 
well as a primitive type. 

 

• The statement 
 

 Date[] holidayList = new Date[20]; 

 

creates 20 indexed reference variables of type Date 

 

– It does not create 20 objects of the class Date. 
 

– Each of these indexed variables are automatically 
initialized to null. 

 

– Any attempt to reference any of them at this point would 
result in a null pointer exception error message. 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 20 

Variables Review: 

Primitives vs. References 

• Every variable is implemented as a location in 

computer memory. 
 

• When the variable is a primitive type, the value 

of the variable is stored in the memory location 

assigned to the variable. 
 

– Each primitive type always requires the same amount 

of memory to store its values. 

 

        (continued) 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 21 

Variables Review: 

Primitives vs. References 

• When the variable is a class type, only the memory 
address (or reference) where its object is located is 
stored in the memory location assigned to the variable 
(on the stack). 

 

– The object named by the variable is stored in the heap. 

 

– Like primitives, the value of a class variable is a fixed size. 

 

– The object, whose address is stored in the variable, can be 
of any size. 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 22 

Class Parameters 

• All parameters in Java are call-by-value 
parameters. 

– A parameter is a local variable that is set equal 
to the value of its argument. 

 

– Therefore, any change to the value of the 
parameter cannot change the value of its argument. 

 

• Class type parameters appear to behave 
differently from primitive type parameters. 
– They appear to behave in a way similar to 

parameters in languages that have the call-by-
reference parameter passing mechanism. 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 23 

Class Parameters 

• The value plugged into a class type parameter 
is a reference (memory address). 

 

– Therefore, the parameter becomes another name 
for the argument. 

 

– Any change made to the object referenced by the 
parameter will be made to the object referenced by 
the corresponding argument. 

 

– Any change made to the class type parameter itself 
(i.e., its address) will not change its corresponding 
argument (the reference or memory address). 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 24 

changeDay Example 
public class DateParameterTest 

{ 

 public static void changeDay (int day) 
 { day = 1; } 

 

 public static void changeDate1( Date aDate ) 

  { aDate = new Date( 1, 1, 2001); } 

 
public static void changeDate2( Date aDate ) 
 { aDate.setDate( 1, 1, 2001 ); } 

 

 public static void main( String[ ] args ) 
{ 

  Date birthday = new Date( 1, 23, 1982 ); 
  

  changeDay( birthday.getDay( ) ); 
 System.out.println(birthday.toString( )); // output? 

 

  changeDate1( birthday ); 

  System.out.println(birthday.toString( )); // output? 

 

  changeDate2( birthday ); 

  System.out.println(birthday.toString( )); // output? 

 } 

} 



Version 9/10 25 

 Use of = and == with Variables of a Class Type 

• The assignment operator (=) will produce two 
reference variables that name the same object. 

 

• The test for equality (==) also behaves differently for 
class type variables. 

 
– The == operator only checks that two class type 

variables have the same memory address. 

 

– Unlike the equals method, it does not check that their 
instance variables have the same values. 

 

– Two objects in two different locations whose instance 
variables have exactly the same values would still test 
as being "not equal." 

Copyright © 2008 Pearson Addison-Wesley. 
 All rights reserved 



Version 9/10 26 

The Constant null 

• null is a special constant that may be assigned to a 
reference variable of any class type. 

 

YourClass yourObject = null; 
 

• Used to indicate that the variable has no "real value." 
– Used in constructors to initialize class type instance 

variables when there is no obvious object to use. 

 

• null is not an object. It is, a kind of "placeholder" for a 
reference that does not name any memory location. 

 

– Because it is like a memory address, use == or != (instead 
of equals) to test if a reference variable contains null. 

 

if (yourObject == null)  . . . 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 27 

Anonymous Objects 

• Recall, the new operator 

– invokes a constructor which initializes an object, and  

– returns a reference to the location in memory of the object 
created. 

• This reference can be assigned to a variable of the 
object's class type. 

 

• Sometimes the object created is used as an argument to 
a method, and never used again. 

– In this case, the object need not be assigned to a variable, 
i.e., given a name. 

 

• An object whose reference is not assigned to a variable 
is called an anonymous object. 

Copyright © 2008 Pearson Addison-Wesley.  
All rights reserved 



Version 9/10 28 

Anonymous Object Example 

• An object whose reference is not assigned to a variable 
is called an anonymous object. 

 

• An anonymous Date object is used here as a parameter: 
  

 Date birthday = new Date( 1, 23, 1982 ); 
if (birthday.equals( new Date ( 1, 7, 2000 ) ) 
 System.out.println( “Equal!” ); 

 

• The above is equivalent to: 
  

 Date birthday = new Date( 1, 23, 1982 ); 

 Date temp = new Date( 1, 7, 2000 ); 
if (birthday.equals( temp ) 
 System.out.println( “Equal!” ); 


