
CMSC 202H

Classes and Objects:

Reusing Classes with Composition

Version 10/11 2

Code Reuse

 Effective software development relies on
reusing existing code.

 Code reuse must be more than just copying
code and changing it which is often the case
with procedural languages like C.

 The goal with OOP languages is to reuse
classes without changing the code within the
class - one OOP technique for code reuse is
known as composition.

Version 10/11 3

A Simple Database

Your favorite cousin wishes to implement a simple database of
family relatives. His application has only a few requirements.

He would like record the name, birthday, and date of death of each
family relative. A report is required that prints all information for
each family member. Family members must be comparable to
avoid duplicate entries in the database. For ease of data entry, it
must be possible to make a copy of an existing family member.

Your contribution to this project is to design and implement a class
named Person that will represent a single family member.

Version 10/11 4

Designing A Person Class:

 Primitive Instance Variables

 To model the kinds of entities we will need for the task at hand, a
simple Person class would contain instance variables representing
details about a person's name, the date on which they were born, and
the date on which they died.

 As a first pass, we could model this data with instance variables of
simple types: primitive types and String:

public class Person

{

 private String name;

 private int born_date, born_month, born_year;

 private Date died_date, died_month, died_year;

 . . .

 Also, as a first line of defense for privacy and to provide proper
encapsulation, note that we declare each of the instance variables
private.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 5

Designing A Person Class:

 Class Instance Variables

 However, we previously developed a class called Date that would be
perfect for storing birth and death dates—could we reuse that?
Yes, we can, just by including instance variables of class type. (We’ve
already been doing this with String).

public class Person

{

 private String name;

 private Date born;

 private Date died; //null means still alive

 . . .

 Again, we should declare each of the instance variables private.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 6

Composition

 Note that the Person class contains three class
type instance variables.

 private String name;

 private Date born;

 private Date died;

 The use of classes as instance variables is a design
method known as aggregation or composition.

 Composition is a fundamental way to reuse code,
but there are coding considerations when
composition is used.

Version 10/11 7

Composition Considerations

 With composition, Person becomes a user of
the Date and String classes.

 The Person class has no special privileges
with respect to Date or String.

 The Person class should delegate
responsibility to the Date and String classes
whenever possible.

Version 10/11 8

Designing a Person Class: Constraints

 In order to exist, a person must have (at least) a
name and a birth date.
 Therefore, it would make no sense to have a no-argument
Person class constructor.

 A person who is still alive does not yet have a date of
death.
 Therefore, the Person class constructor will need to be able

to deal with a null value for date of death.

 A person who has died must have had a birth date
that preceded his or her date of death.
 Therefore, when both dates are provided, they will need to

be checked for consistency.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 9

Designing a Person Class:

 Behaviors/Services

 After reading the problem description the following

behaviors/services have been identified for the

Person class.

 Create a Person with a name, birthday, and date of death

 Compare two Person objects to determine if they are

identical

 Format a string containing all Person attributes

 Create a new Person which is the copy of an existing

person

Version 10/11 10

Iterative Process

 As we go into more detail in thinking about the

behaviors, we might find other attributes that it

would be important, or convenient, to model

 The process of designing a class is cyclical and

evolving in nature

Version 10/11 11

Designing a Person Class:

 The Class Invariant

 A statement that is always true for every object of the class is
called a class invariant.

 A class invariant can help to define a class in a consistent and

organized way.

 For the Person class, the following should always be true.

 An object of the class Person has a name, a date of birth (which

is not null), and if the object has a date of death, then the date
of death is equal to or later than the date of birth

 Checking the Person class confirms that this is true of every
object created by a constructor, and all the other methods (e.g.,
the private method consistent) preserve the truth of this
statement.

Version 10/11 12

Class Invariant Summary

 The class invariant is stated as part of the class documentation.

 Error checking in the constructor(s) and mutators insure that the

class invariant is not violated.

 Methods of the class which do not change the class’ state may

assume the class invariant holds.

Version 10/11 13

A Person Class Constructor

public Person(String theName, Date birthDate, Date deathDate)

{

 // check that birthDate <= deathDate

 // consistent() is a private helper method

 if (theName != null && consistent(birthDate, deathDate))

 {

 name = theName;

 born = new Date(birthDate); // copy the birtheDate object

 if(deathDate == null)

 died = null;

 else

 died = new Date(deathDate);

 }

 else

 {

 // later we’ll deal with errors differently

 System.out.println("Inconsistent Person parameters.“);

 System.exit(0);

 }

}

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 14

Designing a Person Class:

 The Class Invariant

/** Class invariant: A Person always has a date of birth, and
if the Person has a date of death, then the date of death is
equal to or later than the date of birth.

 To be consistent, name and birthDate must not be null. If
there is no date of death (deathDate == null), that is

 consistent with any birthDate. Otherwise, the birthDate

 must come before or be equal to the deathDate.

 precedes() is a boolean method in Date

*/

private boolean

consistent(Date birthDate, Date deathDate)

{

 if(birthDate == null) return false;

 if(deathDate == null) return true;

 return birthDate.precedes(deathDate)

 || birthDate.equals(deathDate);

 }

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 15

Designing a Person Class:

 The equals Method

 The definition of equals for the class Person includes an
invocation of equals for the class String, and an invocation of
the method equals for the class Date.

 The Person class passes responsibility for determining equality to
the String and Date classes invoking their equals methods.

 This is an important example of code reuse arising from the use of

composition to implement Person.

 Java determines which equals method is being invoked from the
type of its calling object.

 (Recall: equals() is special, because methods like
ArrayList.indexOf() expect to call it.)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 16

Designing a Person Class:

 The equals Method

public boolean equals(Person otherPerson)

{

 if (otherPerson == null)

 return false;

 else

 return name.equals(otherPerson.name)

 && born.equals(otherPerson.born)

 && datesMatch(died, otherPerson.died);

}

Copyright © 2008 Pearson Addison-Wesley
All rights reserved

This is the equals method for the

String class

This is the equals method for the

Date class

This is a special helper method that

handles null Date references

Version 10/11 17

Designing a Person Class:

 datesMatch Helper Method

/** To match date1 and date2 must either be the

 same date or both be null.

*/

private boolean

datesMatch(Date date1, Date date2)

{

 if(date1 == null)

 return date2 == null; // both null is ok

 else if(date2 == null) // && date1 != null

 return false; // only one null not ok

 else // both dates are not null

 return date1.equals(date2);

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 18

Designing a Person Class:

 The toString Method

 The Person class toString method includes invocations of the
Date class toString method.

 Again, an example of code reuse and delegation of responsibility
due to composition.

public String toString()

{

 String diedString;

 if(died == null)

 diedString = ""; //Empty string

 else

 diedString = died.toString();

 return name + ", " + born + "-" + diedString;

}

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

This is the same as born.toString()

Version 10/11 19

Designing a Person Class:

 Making a Copy

 Making a copy of an object requires a special

method called a copy constructor.

 A copy constructor is a constructor with a
single argument of the same type as the class.

 The copy constructor should create an object
that is a separate, independent object, but with
the instance variables set so that it is an exact
copy of the argument object.

Version 10/11 20

Copy Constructor for a Class with Primitive Type

 Instance Variables

// a class that does not use composition can

// simply copy the values of the primitive instance

// variables

public Date(Date aDate)

{

 if(aDate == null) // Not a real date object parameter

 {

 // we’ll handle errors differently later

 System.out.println("Fatal Error.“);

 System.exit(0);

 }

 // just copy the primitive variables using assignment

 // month is a String which is NOT primitive, but that’s ok

 month = aDate.month;

 day = aDate.day;

 year = aDate.year;

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 21

Copy Constructor for a Class Using Composition

 Because of composition, the technique used with Date will not
work correctly with Person.

public Person(Person original)

{

if(original == null)

{

 System.out.println("Fatal error.“);

 System.exit(0);

}

name = original.name; // ok

born = original.born //dangerous

died = original.died //dangerous

}

This code would not create an independent copy of the original
object. Why not?

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 22

Copy Constructor for a Class with

 Class Type Instance Variables

 The actual copy constructor for the Person class is a "safe"
version that creates completely new and independent copies of
born and died, and therefore, a completely new and
independent copy of the original Person object.

 For example:

 born = new Date(original.born);

 Note that in order to define a correct copy constructor for a class
that uses composition, copy constructors must already be
defined for the instance variables' classes (e.g. Date).

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 23

Copy Constructor for a Class

 Using Composition

public Person(Person original)

{

 if(original == null)

 {

 System.out.println("Fatal error.“);

 System.exit(0);

 }

 name = original.name;

 born = new Date(original.born);

 if(original.died == null)

 died = null;

 else

 died = new Date(original.died);

}

// Why don’t we have to create a new string for name?

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 24

Using and Misusing References

 When writing a program, it is very important to
insure that private instance variables remain truly
private.

 For a primitive type instance variable, just adding
the private modifier to its declaration should
insure that there will be no privacy leaks.

 For a class type instance variable, adding the
private modifier alone is not sufficient.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 25

Pitfall: Privacy Leaks

 The previously illustrated examples from the Person class show
how an incorrect definition of a copy constructor can result in a
privacy leak.

 A similar problem can occur with incorrectly defined mutator or
accessor methods.

 Wrong
public Date getBornDate()

{

 return born; //dangerous – why??

}

 Correct
public Date getBornDate()

{

 return new Date(born); //correct

}

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 26

Privacy vs. Efficiency

 As a general rule, privacy considerations trump efficiency in most
cases

 A possible class of exceptions is where the enclosing class is
primarily implementing a storage model
 This is very specific, but also very common

 E.g.: ArrayLists and other collection classes do not by default do deep copies,
and this was by design; you have to manage this yourself if desired

 If the included class can be considered a part of the state of the
enclosing class, it should definitely be completely protected from
privacy leaks.
 E.g.: “born” instance variable of Person class

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Version 10/11 27

Composition and Encapsulation

 Suppose that the user of the Person class

has a new requirement: they wish to

abbreviate a Person’s birth month by

displaying only the first 3 characters.

 How do we provide this feature in an

appropriate OOP way keeping in mind the

principle of encapsulation?

Version 10/11 28

One Way

 Add an accessor for the born date (getBornDate) to

the Person class and add an accessor for the month

(getMonth) to the Date class.

 Then the Person class user can write this code.

Person bob =

 new Person(“Bob”, new Date(“January”, 14, 1944), null);

String abbrev =

 bob.getBornDate().getMonth().substring(0,2);

System.out.println(abbrev);

What’s good or bad with this approach?

Version 10/11 29

Another Way

 Add a new method to the Date class to return the month’s
abbreviation

 public String getMonthAbbreviation()

 { return month.substring(0, 2); }

 Add a new method to the Person class to return the born date
abbreviation

 public String getBornMonthAbbreviation()

 { return born.getMonthAbbreviation(); }

 Now the user of the Person class writes this code.
 Person bob =

 new Person(“Bob”, new Date(“January”, 14, 1944), null);

 String abbrev = bob.getBornMonthAbbreviation();

 System.out.println(abbrev);

 What’s good or bad with this approach?

Version 10/11 30

Composition with Arrays

 Just as a class type can be used as an

instance variable, arrays can also be used as

instance variables.

 We can define an array with a primitive base

type.

private double[] grades;

 Or, an array with a class base type.

private Date [] dates;

Version 10/11 31

Privacy Leaks with Array Instance Variables

 If an accessor method is provided for the array
special care must be taken just as when an
accessor returns a reference to any private object.

public double[] getGrades()

{

 return grades;

}

 The example above will result in a privacy leak.

 Why is this so?

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 32

Privacy Leaks with Array Instance Variables

 The previous accessor method would simply return a reference to
the array grades itself.

 Instead, an accessor method should return a reference to a deep
copy of the private array object.

 Below, grades is an array which is an instance variable of the class
containing the getGrades method.

public double[] getGrades()

{

 double[] temp = new double[grades.length];

 for(int i = 0; i < grades.length; i++)

 temp[i] = grades[i];

 return temp;

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 33

Privacy Leaks with Array Instance Variables

 If a private instance variable is an array that has a

mutable class as its base type, then copies must be

made of each class object in the array when the array

is copied.

public Date[] getDates()

{

 Date[] temp = new Date[dates.length];

 for(int i = 0; i < dates.length; i++)

 temp[i] = new Date(dates[i]);

 return temp;

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Version 10/11 34

But what if…

the user really wants to change the array within the

class?

a. The user shouldn’t know that the class uses an

array.

b. The array must represent some abstract data

element in the class (eg student grades).

c. Provide a method that changes the the abstract

data element without revealing the existence of an

array.

Version 10/11 35

Remember…

“Keep it secret, keep it safe”

