
CMSC 202H

ArrayList, Multidimensional Arrays

9/2011 2

What’s an Array List

 ArrayList is

 a class in the standard Java libraries that can hold
any type of object

 an object that can grow and shrink while your
program is running (unlike arrays, which have a
fixed length once they have been created)

 In general, an ArrayList serves the same
purpose as an array, except that an
ArrayList can change length while the
program is running

9/2011 3

The ArrayList Class

 The class ArrayList is implemented using

an array as a private instance variable

 When this hidden array is full, a new larger hidden

array is created and the data is transferred to this

new array

9/2011 4

Using the ArrayList Class

 In order to make use of the ArrayList class, it must

first be imported

import java.util.ArrayList;

 An ArrayList is created and named in the same way

as object of any class:
ArrayList aList = new ArrayList();

(Note that what we are teaching here is an obsolete, simplified form

of ArrayList you can use for now; for documentation, see:
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html.

Later, we will learn the proper form, after covering Generics.)

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

9/2011 5

Adding elements to an ArrayList

 The add method is used to add an element at

the “end” of an ArrayList

list.add("something");

 The method name add is overloaded

 There is also a two argument version that allows

an item to be added at any currently used index

position or at the first unused position

9/2011 6

How many elements?

 The size method is used to find out how many indices
already have elements in the ArrayList

int howMany = list.size();

 The set method is used to replace any existing element,
and the get method is used to access the value of any
existing element

list.set(index, "something else");

String thing = (String) list.get(index);

Note that the returned value must be cast to the proper type

 size is NOT capacity

 size is the number of elements currently stored in the
ArrayList

 Capacity is the maximum number of elements which can
be stored. Capacity will automatically increase as
needed

9/2011 7

ArrayList code Example
public static void main(String[] args)

{

 ArrayList myInts = new ArrayList();

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < 10; k++)

 myInts.add(3 * k);

 myInts.set(6, 44);

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < myInts.size(); k++)

 System.out.print(myInts.get(k) + “, “);

}

// output

Size of myInts = 0

Size of myInts = 10

0, 3, 6, 9, 12, 15, 44, 21, 24, 27

9/2011 8

Methods in the Class ArrayList

 The tools for manipulating arrays consist only
of the square brackets and the instance
variable length

 ArrayLists, however, come with a
selection of powerful methods that can do
many of the things for which code would have
to be written in order to do them using arrays

ArrayList Constructors

 Constructors:

 ArrayList()

 Constructs an empty list with an initial capacity of ten.

 ArrayList(int initialCapacity)

 Constructs an empty list with the specified initial

capacity.

(Constructor and method descriptions borrowed from Sun javadoc pages)

 9/2011 9

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

ArrayList Methods

 Method Summary (incomplete)

 void add(int index, Object element)

 Inserts the specified element at the specified position in

this list.

 boolean add(Object o)

 Appends the specified element to the end of this list.

 int size()

 Returns the number of elements in this list.

9/2011 10

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

ArrayList Methods (cont)

 Object set(int index, Object element)

 Replaces the element at the specified position in this list

with the specified element.

 Object get(int index)

 Returns the element at the specified position in this list.

 Object remove(int index)

 Removes the element at the specified position in this

list. protected

 void removeRange(int fromIndex, int toIndex)

 Removes from this List all of the elements whose index

is between fromIndex, inclusive and toIndex, exclusive.

 9/2011 11

http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

ArrayList Methods (cont)

 void clear()

 Removes all of the elements from this list.

 Object clone()

 Returns a shallow copy of this ArrayList instance.

 int indexOf(Object elem)

 Searches for the first occurence of the given argument,

testing for equality using the equals method.

 int lastIndexOf(Object elem)

 Returns the index of the last occurrence of the specified

object in this list.

9/2011 12

http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html

9/2011 13

The "For Each" Loop

 The ArrayList class is an example of a

collection class

 Starting with version 5.0, Java has added a

new kind of for loop called a for-each or

enhanced for loop

 This kind of loop has been designed to cycle

through all the elements in a collection (like an
ArrayList)

9/2011 14

“for-each” example
public class ForEach

{

 public static void main(String[] args)

 {

 ArrayList list = new ArrayList();

 list.add(new Date(1, 1, 1000));

 list.add(new Date(7, 4, 1776));

 list.add(new Date(9, 1, 2011));

 // “for each object, i, in list”

 for(Object i : list)

 System.out.println(i);

 }

}

//-- Output ---

1/1/1000

7/4/1776

9/1/2011

9/2011 16

Copying an ArrayList

// create an ArrayList of Dates (assume we have some around)

ArrayList a = new ArrayList();

a.add(d1); a.add(d2); a.add(d3);

 Assignment doesn’t work

 As we’ve seen with any object, using assignment
just makes two variables refer to the same ArrayList.

 ArrayList b = a;

Stack Heap

a

b 1/1/1000 7/4/1776 9/1/2011

9/2011 17

Copying an ArrayList

ArrayList’s clone() method makes a shallow copy

ArrayList b = a.clone();

Stack Heap

a

b

1/1/1000 7/4/1776 9/1/2011

9/2011 18

Copying an ArrayList

We need to manually make a deep copy
ArrayList b = a.clone();

Stack Heap

a

b

1/1/1000 7/4/1776 9/1/2011

9/2011 19

Copying an ArrayList

We need to manually make a deep copy
ArrayList b = a.clone();

for(int k = 0; k < b.size(); k++) {

 Date origDate = (Date) b.get(k);

b.set(k, new Date(origDate));

}

Stack Heap

a

b

1/1/1000 7/4/1776 9/1/2011

1/1/1000 7/4/1776 9/1/2011

9/2011 20

ArrayList vs Array

Why use an array instead of an ArrayList

1. An ArrayList is less efficient than an array

2. ArrayList does not have the convenient square
bracket notation

3. The elements of an ArrayList must be a class type (or
other reference type). It cannot be a primitive type.
(Although wrappers, auto boxing, and auto unboxing
make this less of an issue with Java 5)

9/2011 21

ArrayList vs Array

Why use an ArrayList instead of an array?
1. Arrays can’t grow. Their size is fixed at compile time.

 ArrayList grows and shrinks as needed while your
program is running

2. You need to keep track of the actual number of elements
in your array (recall partially filled arrays).

 ArrayList will do that for you.

3. Arrays have no methods (just length instance variable)

 ArrayList has powerful methods for manipulating the
objects within it

Some Warnings

 This lecture describes an obsolete form of

ArrayList

 The original form of ArrayList stored Object elements,

so you had to constantly do casts

 The addition of generics to the language completely

changed the use of collections like ArrayLists

 To keep a modicum of backwards compatibility, raw

types allow ArrayLists to be used as originally

designed

 Important: just because you can mix types together

does not mean you should!

9/2011 22

9/2011 23

The Vector Class

 The Java standard libraries have a class
named Vector that behaves almost exactly
the same as the class ArrayList

 In most situations, either class could be used,
however the ArrayList class is newer
(Java 5), and is becoming the preferred class

Multidimensional Arrays

9/2011 24

Multidimensional Arrays

 Review of 1-dimensional arrays:

 To declare and initialize:
 int[] myArray = new int[4];

 To access:
 myArray[3] = myArray[3] + 1;

 To use as an object:
 for (i = 0; I < myArray.length; i++) {

 To demonstrate that it’s a reference variable:
 myArray = null;

 // Now, “myArray[3]” would cause an error

9/2011 25

Multidimensional Arrays

 Extending to 2-dimensional arrays:

 To declare and initialize:
 int[][] myArray = new int[3][4];

// How would you declare 2-dim arrays in C?

 To access:
 myArray[1][3] = myArray[1][3] + 1;

 To use as an object:
 numRows = myArray.length;

// Following assumes rectangular matrix

numCols = myArray[0].length;

9/2011 26

Multidimensional Arrays

 But in Java, a 2D array is actually a reference-

to-an-array-of-references:
 // Can do:

myArray[1] = null;

myArray[1][3] = 47; // This will cause error

// but myArray[0][3] still okay

// Can also make it a “ragged” array:

myArray[1] = new int[20];

// What do you think following does?

myArray = new int[10][];

// …and what would this do?

myArray = new int[40];

 9/2011 27

Multidimensional Arrays

 Luckily, if you don’t want to get fancy, you

can pretend that it’s simply a 2-D array

 Even if you do create complex, dynamically

allocated, ragged arrays, you don’t have to

worry about memory management

9/2011 28

