
Aug 9, 2007 1

CMSC 202

ArrayList

Aug 9, 2007 2

What’s an Array List

 ArrayList is

 a class in the standard Java libraries that can hold
any type of object

 an object that can grow and shrink while your
program is running (unlike arrays, which have a
fixed length once they have been created)

 In general, an ArrayList serves the same
purpose as an array, except that an
ArrayList can change length while the
program is running

Aug 9, 2007 3

The ArrayList Class

 The class ArrayList is implemented using

an array as a private instance variable

 When this hidden array is full, a new larger hidden

array is created and the data is transferred to this

new array

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 4

Using the ArrayList Class

 In order to make use of the ArrayList class, it

must first be imported

import java.util.ArrayList;

 An ArrayList is created and named in the same

way as object of any class, except that you specify

the base type as follows:

ArrayList<BaseType> aList =

 new ArrayList<BaseType>();

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 5

Creating an ArrayList

 An initial capacity can be specified when creating an

ArrayList as well

 The following code creates an ArrayList that stores objects of

the base type String with an initial capacity of 20 items

ArrayList<String> list = new ArrayList<String>(20);

 Specifying an initial capacity does not limit the size to which
an ArrayList can eventually grow

 Note that the base type of an ArrayList is specified

as a type parameter

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 6

Adding elements to an ArrayList

 The add method is used to add an element at

the “end” of an ArrayList

list.add("something");

 The method name add is overloaded

 There is also a two argument version that allows

an item to be added at any currently used index

position or at the first unused position

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 7

How many elements?

 The size method is used to find out how many indices
already have elements in the ArrayList

int howMany = list.size();

 The set method is used to replace any existing element,
and the get method is used to access the value of any
existing element

list.set(index, "something else");

String thing = list.get(index);

 size is NOT capacity

 size is the number of elements currently stored in the
ArrayList

 Capacity is the maximum number of elements which can
be stored. Capacity will automatically increase as
needed

 Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

Aug 9, 2007 8

ArrayList code Example
// Note the use of Integer, rather than int

public static void main(String[] args)

{

 ArrayList<Integer> myInts = new ArrayList<Integer>(25);

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < 10; k++)

 myInts.add(3 * k);

 myInts.set(6, 44);

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < myInts.size(); k++)

 System.out.print(myInts.get(k) + “, “);

}

// output

Size of myInts = 0

Size of myInts = 10

0, 3, 6, 9, 12, 15, 44, 21, 24, 27

Aug 9, 2007 9

Methods in the Class ArrayList

 The tools for manipulating arrays consist only
of the square brackets and the instance
variable length

 ArrayLists, however, come with a
selection of powerful methods that can do
many of the things for which code would have
to be written in order to do them using arrays

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 10

Some Methods in the Class

ArrayList (Part 1 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 11

Some Methods in the Class

ArrayList (Part 2 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 12

Some Methods in the Class

ArrayList (Part 3 of 11)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 13

Some Methods in the Class

ArrayList (Part 4 of 11)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 14

Some Methods in the Class

ArrayList (Part 5 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 15

Some Methods in the Class

ArrayList (Part 6 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 16

Some Methods in the Class

ArrayList (Part 7 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 17

Some Methods in the Class

ArrayList (Part 8 of 11)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 18

Some Methods in the Class

ArrayList (Part 9 of 11)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 19

Some Methods in the Class

ArrayList (Part 10 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 20

Some Methods in the Class

ArrayList (Part 11 of 11)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

Aug 9, 2007 21

More example code
// Note the use of Integer instead of int

public static void main(String[] args)

{

 ArrayList<Integer> myInts = new ArrayList<Integer>(25);

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < 10; k++)

 myInts.add(3 * k);

 myInts.set(6, 44);

 myInts.add(4, 42);

 myInts.remove(new Integer(99));

 System.out.println(“Size of myInts = “ + myInts.size());

 for (int k = 0; k < myInts.size(); k++)

 System.out.print(myInts.get(k) + “, “);

 if (myInts.contains(57)) System.out.println(“57 found”);

 System.out.println (“44 found at index “ + myInts.indexOf(44));

}

Aug 9, 2007 22

Why are Some Parameters of Type Base_Type and

Others of type Object

 When looking at the methods available in the ArrayList class,
there appears to be some inconsistency

 In some cases, when a parameter is naturally an object of the
base type, the parameter type is the base type

 However, in other cases, it is the type Object

 This is because the ArrayList class implements a number of
interfaces, and inherits methods from various ancestor classes

 These interfaces and ancestor classes specify that certain
parameters have type Object

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 23

The "For Each" Loop

 The ArrayList class is an example of a

collection class

 Starting with version 5.0, Java has added a

new kind of for loop called a for-each or

enhanced for loop

 This kind of loop has been designed to cycle

through all the elements in a collection (like an
ArrayList)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 24

“for-each” example
public class ForEach

{

 public static void main(String[] args)

 {

 ArrayList<Integer> list = new ArrayList<Integer>;

 list.add(42);

 list.add(57);

 list.add(86);

 // “for each Integer, i, in list”

 for(Integer i : list)

 System.out.println(i);

 }

}

//-- Output ---

42

57

86

Aug 9, 2007 25

Copying an ArrayList

// create an ArrayList of Integers

ArrayList<Integer> a = new ArrayList<Integer>();

a.add(42); a.add(57); a.add(86);

 Assignment doesn’t work

 As we’ve seen with any object, using assignment
just makes two variables refer to the same ArrayList.

 ArrayList<Integer> b = a;

Stack Heap

a

b 42 57 86

Aug 9, 2007 26

Copying an ArrayList

ArrayList’s clone() method makes a shallow copy

ArrayList<Integer> b = a.clone();

Stack Heap

a

b

42 57 86

Aug 9, 2007 27

Copying an ArrayList

We need to manually make a deep copy

ArrayList<Integer> b = a.clone();

for(int k = 0; k < b.size(); k++)

b.set(k, a.get(k));

Stack Heap

a

b

42 57 86

42 57 86

Aug 9, 2007 28

ArrayList vs Array

Why use an array instead of an ArrayList

1. An ArrayList is less efficient than an array

2. ArrayList does not have the convenient square
bracket notation

3. The base type of an ArrayList must be a class type
(or other reference type). It cannot be a primitive type.
(Although wrappers, auto boxing, and auto unboxing
make this a non-issue with Java 5)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Aug 9, 2007 29

ArrayList vs Array

Why use an ArrayList instead of an array?
1. Arrays can’t grow. Their size is fixed at compile time.

 ArrayList grows and shrinks as needed while your
program is running

2. You need to keep track of the actual number of elements
in your array (recall partially filled arrays).

 ArrayList will do that for you.

3. Arrays have no methods (just length instance variable)

 ArrayList has powerful methods for manipulating the
objects within it

Aug 9, 2007 30

The Vector Class

 The Java standard libraries have a class
named Vector that behaves almost exactly
the same as the class ArrayList

 In most situations, either class could be used,
however the ArrayList class is newer
(Java 5), and is becoming the preferred class

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

