CMSC 202

ArrayList



What’s an Array List

ArrayList s

o a class in the standard Java libraries that can hold
any type of object

o an object that can grow and shrink while your
program is running (unlike arrays, which have a
fixed length once they have been created)

In general, an ArrayList serves the same
purpose as an array, except that an
ArrayList can change length while the
program Is running

Aug 9, 2007



The ArrayList Class

The class ArrayList Is implemented using
an array as a private instance variable

2 When this hidden array is full, a new larger hidden
array is created and the data is transferred to this
new array

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 3



Using the ArrayList Class

In order to make use of the ArrayList class, it
must first be imported
import java.util.ArrayList;

An ArrayList IS created and named in the same

way as object of any class, except that you specify

the base type as follows:
ArraylList<BaseType> aList =
new ArrayList<BaseType>() ;

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved



Creating an ArrayList

An initial capacity can be specified when creating an
ArrayList as well

o The following code creates an ArrayList that stores objects of
the base type String with an initial capacity of 20 items

ArrayList<String> list = new ArrayList<String>(20) ;
o Specifying an initial capacity does not limit the size to which
an ArrayList can eventually grow
Note that the base type of an ArrayList is specified
as a type parameter

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 5



Adding elements to an ArrayList

The add method is used to add an element at

the “end” of an ArrayList
list.add("something") ;

o The method name add is overloaded

o There is also a two argument version that allows
an item to be added at any currently used index
position or at the first unused position

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 6



How many elements?

The size method is used to find out how many indices
already have elements in the ArrayList

int howMany = list.size();
The set method is used to replace any existing element,

and the get method is used to access the value of any
existing element

list.set (index, "something else'");
String thing = list.get(index) ;
size IS NOT capacity

o Size Is the number of elements currently stored in the
ArrayList

o Capacity is the maximum number of elements which can
be stored. Capacity will automatically increase as
needed

Copyright © 2008 Pearson Addison-Wesley.

Aug 9, 2007 All rights reserved



‘ ArrayList code Example

// Note the use of Integer, rather than int

public static void main( String[ ] args)

{
ArraylList<Integer> myInts = new ArraylList<Integer>(25);

System.out.println( “Size of myInts = “ + myInts.size());
for (int k = 0; k < 10; k++)

myInts.add( 3 * k );
myInts.set( 6, 44 );

System.out.println( “Size of myInts = “ + myInts.size());
for (int k = 0; k < myInts.size(); k++)
System.out.print ( myInts.get( k ) + %, % );
}
// output

Size of myInts = 0
Size of myInts = 10
o, 3, 6, 9, 12, 15, 44, 21, 24, 27

Aug 9, 2007



Methods in the Class ArrayList

The tools for manipulating arrays consist only
of the square brackets and the instance
variable 1ength

ArrayLists, however, come with a
selection of powerful methods that can do
many of the things for which code would have
to be written in order to do them using arrays

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 9



'Some Methods in the Class
ArrayList (Part 1 of 11)

Display 14,1 Some Methods in the Class ArrayList

public ArraylList<Base_Type>(int initialCapacity)

Creates an empty ArrayList with the specified Base_Type and initial capacity.

public Arraylist<Base_Type>()
Creates an empty ArrayList with the specified Base_Type and an initial capacity of 10.

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 10



'Some Methods in the Class
ArrayList (Part 2 of 11)

Display 14.1  Some Methods in the Class ArrayList

public Base_Type set( int index, Base_Type newElement)

Sets the element at the specified index to newElement. Returns the element previously at that position,
but the method is often used as if it were a void method. If you draw an analogy between the ArrayL-
ist and an array a, this statement is analogous to setting a[index] to the value newElement. The
index must be a value greater than or equal to @ and less than the current size of the ArrayList. Throws
an IndexOutOfBoundsException if the index is not in this range.

public Base_Type get(int index)
Returns the element at the specified index. This statement is analogous to returning a[index] for an
array a. The index must be a value greater than or equal to ©@ and less than the current size of the

ArrayList. Throws IndexOutOfBoundsException if the index is not in this range.

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 11



'Some Methods in the Class
ArrayList (Part 53 of 11)

Display 1.1 Some Methods in the Class ArraylList

public boolean add(Base_Type newElement)

Adds the specified element to the end of the calling ArrayList and increases the ArrayList’s size by
one. The capacity of the ArrayList is increased if that is required. Returns true if the add was success-
ful. (The return type is boolean, but the method is typically used as if it were a void method.)

public void add( int index, Base_Type newElement)

Inserts newElement as an element in the calling ArrayList at the specified index. Each element in the
ArrayList with an index greater or equal to index is shifted upward to have an index that is one
greater than the value it had previously. The index must be a value greater than or equal to © and less
than or equal to the current size of the ArrayList. Throws IndexOutOfBoundsException if the index
is not in this range. Note that you can use this method to add an element after the last element. The
capacity of the ArrayList is increased if that is required.

(continued)

Copyright © 2008 Pearson Addison-Wesley.

Aug 9, 2007 All rights reserved 12



'Some Methods in the Class
ArrayList (Part 4 of 11)

Display 14,1 Some Methods in the Class ArrayList

public Base_Type remove(int index)

Deletes and returns the element at the specified index. Each element in the ArrayList with an index
greater than index is decreased to have an index that is one less than the value it had previously. The
index must be a value greater than or equal to @ and less than the current size of the ArrayList. Throws
IndexOutOfBoundsException if the index is not in this range. Often used as if it were a void
method.

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 13



'Some Methods in the Class
ArrayList (Part 5 of 11)

Display 14.1 Some Methods in the Class ArraylList

protected void removeRange(int fromIndex, int toIndex)

Deletes all the element with indices isuch that fromIndex < /i< toIndex. Element with indices greater
than or equal to toIndex are decreased appropriately.

public boolean remove(Object theElement)

Removes one occurrence of theElement from the calling ArrayList. If theElement is found in the
ArrayList, then each element in the ArrayList with an index greater than the removed element’s
index is decreased to have an index that is one less than the value it had previously. Returns true if
theElement was found (and removed). Returns false if theElement was not found in the calling
ArraylList.

public void clear()
Removes all elements from the calling ArrayList and sets the ArrayList’s size to zero.

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 14



Some Methods in the Class
ArrayList (Part 6 of 11)

Display 14.1  Some Methods in the Class ArrayList

public boolean contains(Object target)

Returns true if the calling ArrayList contains target; otherwise, returns false. Uses the method
equals of the object target to test for equality with any element in the calling ArrayList.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the object
target to test for equality. Returns —1 if target is not found.
(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 15



'Some Methods in the Class
ArrayList (Part 7 of 11)

Display 14,1 Some Methods in the Class ArrayList

public boolean isEmpty()

Returns true if the calling ArrayList is empty (that is, has size 0); otherwise, returns false.

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved

16



Some Methods in the Class
ArrayList (Part 8 of 11)

Display 14.1  Some Methods in the Class ArraylList

public int size()

Returns the number of elements in the calling ArrayList.

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling ArrayList, if necessary, in order to ensure that the ArrayList can
hold at least newCapacity elements. Using ensureCapacity can sometimes increase efficiency, but its
use is not needed for any other reason.

public void trimToSize()

Trims the capacity of the calling ArrayList to the ArrayList’s current size. This method is used to save
storage space.

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 17



Some Methods in the Class
ArrayList (Part9 of 11)

Display 14.1  Some Methods in the Class ArrayList

public Object[] toArray()

Returns an array containing all the elements on the list. Preserves the order of the elements.

public Typel[] toArray(Typel]l a)

Returns an array containing all the elements on the list. Preserves the order of the elements. Type can be
any class types. If the list will fit in a, the elements are copied to a and a is returned. Any elements of a
not needed for list elements are set to null. If the list will not fit in a, a new array is created.

(As we will discuss in Section 14.2, the correct Java syntax for this method heading is
public <Type> Type[] toArray(Typell a)
However, at this point we have not yet explained this kind of type parameter syntax.)

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 18



'Some Methods in the Class
ArrayList (Part 10 of 11)

Display 14.1  Some Methods in the Class ArrayList

public Object clone()
Returns a shallow copy of the calling ArrayList. Waming: The clone is not an independent copy. Subse-
quent changes to the clone may affect the calling object and vice versa. (See Chapter 5 for a discussion of

shallow copy.)

(continued)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 19



'Some Methods in the Class
ArrayList (Part 11 of 11)

Display 14.1  Some Methods in the Class ArrayList

public boolean equals(Object other)

If other is another ArrayList (of any base type), then equals returns true if and only if both
ArrayLists are of the same size and contain the same list of elements in the same order. (In fact, if
other is any kind of /ist, then equals returns true if and only if both the calling ArrayList and
other are of the same size and contain the same list of elements in the same order. Lists are discussed in

Chapter 16.)

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved

20



More example code

// Note the use of Integer instead of int
public static void main( String[ ] args)
{
ArraylList<Integer> myInts = new ArraylList<Integer>(25);
System.out.println( “Size of myInts = “ + myInts.size());
for (int k = 0; k < 10; k++)
myInts.add( 3 * k );
myInts.set( 6, 44 );
myInts.add( 4, 42 );
myInts.remove ( new Integer (99) );
System.out.println( “Size of myInts = “ + myInts.size());
for (int k = 0; k < myInts.size(); k++)
System.out.print ( myInts.get( k ) + %, “ )3

if (myInts.contains( 57 ) ) System.out.println(“57 found”);

System.out.println (“44 found at index “ + myInts.indexOf (44));

Aug 9, 2007

21



Why are Some Parameters of Type Base Type and
Others of type Object

When looking at the methods available in the ArrayList class,

there appears to be some inconsistency

o In some cases, when a parameter is naturally an object of the
base type, the parameter type is the base type

o However, in other cases, it is the type Object

This is because the ArrayList class implements a number of
Interfaces, and inherits methods from various ancestor classes

o These interfaces and ancestor classes specify that certain
parameters have type Object

Copyright © 2008 Pearson Addison-Wesley.

Aug 9, 2007 All rights reserved 22



The "For Each" Loop

The ArrayList class is an example of a
collection class

Starting with version 5.0, Java has added a
new kind of for loop called a for-each or
enhanced for loop

o This kind of loop has been designed to cycle

through all the elements in a collection (like an
ArrayList)

Copyright © 2008 Pearson Addison-Wesley.

Aug 9, 2007 All rights reserved

23



“for-each” example

public class ForEach

{

public static void main(String[ ] args)

{
ArrayList<Integer> list

list.add( 42 );
list.add( 57 );
list.add( 86 );

// “for each Integer, 1i,
for( Integer i : list )
System.out.println( 1

}
//-- Output ---

42
57
86

new ArraylList<Integer>;

in list”

) ;

Aug 9, 2007

24



Copying an Arraylist

// create an ArrayList of Integers
ArrayList<Integer> a = new ArrayList<Integer>( );

a.add(42); a.add(b7); a.add(806);

Assignment doesn’t work

o As we've seen with any object, using assignment
just makes two variables refer to the same ArrayLlist.

ArrayList<Integer> b = a;

)

Stack Heap

Aug 9, 2007 25



‘ Copying an Arrayl.ist

ArrayList’'s clone( ) method makes a shallow copy

ArraylList<Integer> b = a.clone( );

42 S7 86

Stack Heap

Aug 9, 2007



Copying an Arraylist

We need to manually make a deep copy

ArrayList<Integer> b = a.clone( );

for( int k = 0; k < b.size( ); k++)
b.set (k, a.get(k));

42 57 86
42 57 86
a S S S
b _s—
Stack Heap

Aug 9, 2007

27



Arraylist vs Array

Why use an array instead of an ArrayList

1. AnArrayList is less efficient than an array

2. ArrayList does not have the convenient square
bracket notation

3. The base type of an ArrayList must be a class type

(or other reference type). It cannot be a primitive type.

(Although wrappers, auto boxing, and auto unboxing
make this a non-issue with Java 5)

Copyright © 2008 Pearson Addison-Wesley.

Aug 9, 2007 All rights reserved

28



Arraylist vs Array

Why use an arrayList Instead of an array?

1. Arrays can’t grow. Their size is fixed at compile time.

ArrayList grows and shrinks as needed while your
program is running

2. You need to keep track of the actual number of elements
In your array (recall partially filled arrays).

ArrayList will do that for you.
3. Arrays have no methods (just Length instance variable)

ArrayList has powerful methods for manipulating the
objects within it

Aug 9, 2007 29



The Vector Class

The Java standard libraries have a class
named Vector that behaves almost exactly
the same as the class ArrayList

In mMost situations, either class could be used,
however the ArrayList class is newer

(Java 5), and is becoming the preferred class

Copyright © 2008 Pearson Addison-Wesley.
Aug 9, 2007 All rights reserved 30



