
Java Primer I

CMSC 202

Variable Declaration

• Syntax: <type> <legal identifier>;

• Examples:

int sum;

float average;

double grade = 98;

– Must be declared before being used

– Must appear within a class declaration (no “globals”)

– Must be declared of a given type (e.g. int, float, char, etc.)

Semicolon required!

2

Java's Legal Identifiers

• Are case-sensitive
• Cat, CAT, CaT are all different variable names

• Typically consist of letters, numbers and
underscores

• Must not begin with a number

• Must not contain whitespace

• Must not be a reserved/key word

3

Naming Conventions

• Naming Conventions
– Additional rules that restrict the names of variables resulting

in improving consistency/readability

– Most places of work and education have a set of naming
conventions

– These are not language or compiler enforced

• CMSC 202 Naming Conventions
– Variables & methods

• Start with a lowercase letter

• Indicate “word” boundaries with an uppercase letter

• Restrict the remaining characters to digits and lowercase letters

– Classes
• Start with an uppercase letter

• Otherwise same as variables and methods

– See the CMSC 202 course website

4

Variable Types

Primitive Type
•Declared to be of basic type

• e.g. float, double, char, int

•Variables hold actual data

Reference Type
•Declared to be of class type

• e.g. String, MyClass, Integer

•Variables hold addresses to
dynamically allocated memory
space

• We will discuss this in more
detail later

5

25

int x = 25;

x

String name = "Bubba";

FF00

name

“Bubba”

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

Primitive Types

6

Primitive Types

• All primitive type variables store the information
inside of the variable

int x = 25;

• x contains the value 25
• There are no additional steps required to access the

contents of x

• Default Values
• Java automatically initializes all declared primitive

variables to a default value that is equivalent to 0.
• Integer and floating point types are set to 0.
• The character type is set to the „\u0000‟ Unicode character (null).
• The boolean type is set to false.

7

Reference Types

• Reference type variables must be created dynamically and are
generally in the form

ReferencedType name = new ReferencedType();

• The “new” keyword creates an instance of a class.

• It returns an address to the newly created object on the heap.

• Typically the address is assigned into a variable (e.g. “name”).

• The instance can then be referenced using the variable name.

• Members and methods can be accessed using dot notation.

FF00 Referenced
Object

name

8

Arrays

• Arrays are referenced objects that hold a fixed number
of homogeneous data (i.e. data of the same type).

• These elements appear in contiguous memory.

• General form:
<type>[] <variable name>;

• Sample declarations:
int[] scores;

float[] grades;

• What does each variable contain at this point?

scores grades

9

Arrays

• Initializing an array requires the usage of the keyword “new” to
create the space on the heap to hold the elements

type[] variable_name = new type[number_of_elements];

int[] scores = new int[8];

– Java initializes all elements of the array to the default value
for that type

– The size of an array can be obtained by accessing the
length member variable (e.g. scores.length).

– An array of size 8 will have what for indices?

FFAA

scores

10

Arrays

• We can access any element in the array using array_name[index]

– scores[1] will return what value?

– scores[0] = 82;

• Assigns 82 to index 0 of the array

• How does accessing with array_name [index] really work?

– FFAA is the address of the first element of the array.

– Since all elements of an array are of a common type, we know
that each element will consume the same amount of space.

– Using that knowledge, we can compute the location (offset) of
the element within the array.

scores[2] → FFAA + size of (type)*index

– Luckily, Java handles all this for you!

FFAA 2995

scores

11

Multi-Dimensional Arrays

• Really should be considered an array of arrays (and potentially
of arrays, and so forth)

• You can declare multi-dimensional arrays just like single
dimensional arrays.

• The general form:

type[][] array_name = new type[rows][columns];

• Example:

char [][] ticTacToeBoard = new char[3][3];

• Use the same access syntax as single dimensional arrays.

• What statement will place an O in the upper right corner?

X

12

Printing to the Screen

• Formatted output

System.out.printf("Printing integer %d%n",5);

System.out.printf("%d %c %d", 1, 'a', 2);

• Place holders can be added to represent variables to be
output in the format string.
• %d, %c, %f, %s – What does each stand for?

• Every place holder that appears inside the output string must
have a matching value separated by a comma.

• Add proceeding white space characters and precision to
variables printed.

System.out.printf("2 points of precision %10.2d", 89.999);

• “Two points of precision 90.00” ← no newline character

• Other special formatting
• %n – platform independent newline character

• \t – horizontal tab

13

Printing to the Screen (con‟t)

• Unformatted output

• General formats:

• System.out.print(…) leaves cursor on same line

• System.out.println(…) cursor moves to next line

• Example:
System.out.print(“Hello”);

System.out.print(“ there”);

System.out.println(“Hello”);

System.out.println(“ there”);

Output:
Hello thereHello

there

Binary Operators

• What is a binary operator?

– An operator that has two operands

<operand> <operator> <operand>

– Arithmetic Operators

+ - * / %

– Relational Operators

< > == <= >=

– Logical Operators

&& ||

15

Relational Operators

• In Java, all relational operators evaluate to a boolean value of
either true or false .

x = 5;

y = 6;

– x > y will always evaluate to false .

• Java has a ternary operator – the general form is:

(conditional expression) ? true case : false case ;

• For example:

System.out.println((x > y) ? "X is greater" : "Y is greater");

16

Unary Operators

• Unary operators only have one operand.

! ++ --

++ and -- are the increment and decrement operators

x++ a post-increment (postfix) operation

++x a pre-increment (prefix) operation

• What is the difference between these segments?

x = 5;

System.out.printf("x's value %d%n", x++);

x = 5;

System.out.printf("x's value %d%n", ++x);

17

Precedence

• Order of operator application to operands:
• Postfix operators: ++ -- (right to left)

• Unary operators: + - ++ -- ! (right to left)

• * / % (left to right)

• + - (left to right)

• < > <= >=

• == !=

• &&

• ||

• ? :

• Assignment operator: = (right to left)

18

A Sample Java Program

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved
19

