
Inheritance I

CMSC 202

Class Reuse

 We have seen how classes (and their code)
can be reused with composition.

 An object has another object as one (or more) of
its instance variables.

 Composition models the “has a” relationship.

 A Car has a String (vin, color, make, model)

 A Car has an Engine

 A Book has an array of Pages

2

Object Relationships

 An object can be a specialized version of
another object.
 A Car is a Vehicle

 A Motorcycle is a Vehicle

 A Boat is a Vehicle

 An Aircraft is a Vehicle

 This kind of relationship is know as the “is a” relationship.

 In Object Oriented Programming, this relationship is
modeled with a technique known as inheritance.

 Inheritance creates new classes by “adding” code to a
preexisting class, without actually modifying that class'
definition.

3

Inheritance

• Inheritance is one of the most important
techniques used in OOP.

• Using inheritance
– A very general class is first defined.

• Vehicle, Fruit, Shape

– Then, more specialized versions of the class are
defined, such as Car, Boat, Aircraft (more specific
versions of a Vehicle).
• Adding instance variables and/or
• Adding methods.

– Car's have wheels, Boats have props, Aircraft have wings...

– The specialized classes are said to inherit the
methods and instance variables of the general class.

4

Derived Classes

• There is often a natural hierarchy when
designing certain classes.

• Example:

– In a record-keeping program for the vehicles on a
military base, there are automobiles and aircraft.

– Automobiles can be divided into Cars and
Motorcycles.

– Aircraft can be divided into Planes and
Helicopters.

5

Derived Classes

• All vehicles have certain characteristics in common.
– Vin number, color, number of operators, speed,

number of passengers
– The methods for setting and changing the vin, color,

speed, number of passengers, and number of
operators

• Some vehicles have specialized characteristics.
– Move

• Aircraft move on the ground and can move in the air
• Automobiles move on the ground

– Creating move methods for these two different
groups would be different.

6

Inheritance and OOP

• Inheritance is an abstraction for

– sharing similarities among classes (e.g. vin, color,
speed), and

– preserving their differences (e.g. how they move).

• Inheritance allows us to group classes into
families of related types (Vehicles), allowing
for the sharing of common operations and
data.

7

General Classes

• A class called Vehicle can be defined that
includes all Vehicles.

• This class can then be used to define classes
for Automobile and Aircraft.

• The Automobile class can be used to define
a Car class, and so forth.

8

A Vehicle Class Hierarchy

Vehicle

Automobile Aircraft

Car Motorcycle Airplane Helicopter

Reconnaissance Fighter Bomber

9

The Vehicle Class

10

public class Vehicle {

 private int vin;

 private Color color;

 private int numOperators;

 private int numPassengers;

 private int speed;

 private static int serialNumber = 111111;

 public Vehicle(){ /* code here */}

 public Vehicle(Vehicle v){ /* code here */ }

 public Vehicle(Color cc, int numOperators) {/*code here */}

 // some accessors and mutators

 public void changeColor(Color c){/* code here */}

 public void setNumPassangers(int p){/* code here */}

 public int getNumOperators(){ /* code here */ }

 public int getVinNumber() { /* code here */ }

 public String toString() { /* code here */ }

 public boolean equals(Vehicle other) { /* code here */}

 public void accelerate() { /* code here */ }

 public void decelerate() { /* code here */ }

 public int getSpeed() { /* code here */ }

} 10

Derived Classes
• Since an Automobile “is a” Vehicle, it is defined as

a derived class of the class Vehicle.

– A derived class is defined by adding instance variables
and/or methods to an existing class.

– The class that the derived class is built upon is called
the base class.

– The phrase extends BaseClass must be added
to the derived class definition.

public class Automobile extends Vehicle

11

12

public class Automobile extends Vehicle {

 // instance variables local to the derived class

 private String make;

 private String model;

 private boolean locked;

 public Automobile() {/* code here */}

 public Automobile(String make, String model) {/* code here */}

 // methods that are local to the derived class

 public void isLocked() {/* code here */}

 public void lock() {/* code here */}

 public void unlock() {/* code here */}

 public String toString() {/* code here */}

 public boolean equals(Automobile other) {/* code here */}

}

Automobile Class

12

Derived Class

• A derived class is also called a subclass.

• The class derived from is called a base class or
superclass.

• The derived class inherits all of the following
from the base class.
– public methods

– public and private instance variables

– public and private static variables

• The derived class can add more instance
variables, static variables, and/or methods.

13

Inherited Members

• Definitions for the inherited variables and
methods do not appear in the derived class.

– The code is reused without having to explicitly
copy it, unless the creator of the derived class
redefines one or more of the base class methods.

14

15

public static void main(String[] args){

 Automobile auto = new Automobile("GMC","Hummer");

 // get the vin number of the auto (method of Vehicle)

 System.out.println(“Auto vin: " + auto.getVinNumber());

 // change the color of the auto (method of Vehicle)

 auto.changeColor(Color.DARK_GRAY);

 // lock the auto(method of Automobile)

 auto.lock();

 // lock the auto (method of Vehicle)

 auto.accelerate();

 // print the auto (method of ?)

 System.out.println(auto);

}

Using Automobile & Inheritance

15

Overriding a Method Definition

• A derived class can change or override an inherited
method.

• In order to override an inherited method, a new
method definition is placed in the derived class
definition.

• For example, let’s say automobiles decelerate and
accelerate at a rate of 5 mph.
– It would make sense to override Vehicle’s accelerate

and decelerate methods by defining Automobile’s own
accelerate and decelerate methods.

16

17

Now, this code

 Automobile hummer = new Automobile();

 hummer.accelerate();

invokes the overridden accelerate() method in the Automobile class rather than
the accelerate() method in the Vehicle class.

To override a method in the derived class, the overriding method must have the same

method signature as the base class method.

public class Vehicle {

 // other class code ...

 public void accelerate() { ++speed; }

 public void decelerate() { --speed; }

}

public class Automobile extends Vehicle {

 // other class code ...

 public void accelerate() { speed += 5; }

 public void decelerate() { speed += 5; }

}

Overriding Example

17

Overriding Versus Overloading

• Do not confuse overriding a method in a derived
class with overloading a method name.

– When a method in a derived class has the same
signature as the method in the base class, that is
overriding.

– When a method in a derived class or the same class
has a different signature from the method in the base
class or the same class, that is overloading.

– Note that when the derived class overrides or
overloads the original method, it still inherits the
original method from the base class as well (we’ll see
this later).

18

The final Modifier

• If the modifier final is placed before the
definition of a method, then that method may
not be overridden in a derived class.

• It the modifier final is placed before the
definition of a class, then that class may not
be used as a base class from which to derive
other classes.

19

Pitfall: Use of Private Instance Variables from a
Base Class

• An instance variable that is private in a base class
is not accessible by name in a method definition of
a derived class.
– An object of the Automobile class cannot access

the private instance variable speed by name, even
though it is inherited from the Vehicle base class.

• Instead, a private instance variable of the base
class can only be accessed by the public accessor
and mutator methods defined in that class.
– An object of the Automobile class can use the
getSpeed or accelerate/decelerate
methods to access speed.

20

Encapsulation and Inheritance Pitfall:
 Use of Private Instance Variables from a Base Class

• If private instance variables of a class were
accessible in method definitions of a derived
class,
– then anytime someone wanted to access a private

instance variable, they would only need to create
a derived class, and access the variables in a
method of that class.

• This would allow private instance variables to
be changed by mistake or in inappropriate
ways.

21

Pitfall: Private Methods Are Effectively Not
Inherited

• The private methods of the base class are like
private variables in terms of not being directly
available.

• A private method is completely unavailable, unless
invoked indirectly.
– This is possible only if an object of a derived class

invokes a public method of the base class that
happens to invoke the private method.

• This should not be a problem because private
methods should only be used as helper methods.
– If a method is not just a helper method, then it

should be public.

22

