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Class Reuse 

 We have seen how classes (and their code) 
can be reused with composition. 

 An object has another object as one (or more) of 
its instance variables. 

 Composition models the “has a” relationship. 

 A Car has a String (vin, color, make, model) 

 A Car has an Engine 

 A Book has an array of Pages 
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Object Relationships 

 An object can be a specialized version of 
another object. 
 A Car is a Vehicle 

 A Motorcycle is a Vehicle 

 A Boat is a Vehicle 

 An Aircraft is a Vehicle 

 This kind of relationship is know as the “is a” relationship. 

 In Object Oriented Programming, this relationship is 
modeled with a technique known as inheritance. 

 Inheritance creates new classes by “adding” code to a 
preexisting class, without actually modifying that class' 
definition. 
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Inheritance 

• Inheritance is one of the most important 
techniques used in OOP. 
 

• Using inheritance 
– A very general class is first defined. 

• Vehicle, Fruit, Shape 

– Then, more specialized versions of the class are 
defined, such as Car, Boat, Aircraft (more specific 
versions of a Vehicle). 
• Adding instance variables and/or 
• Adding methods. 

– Car's have wheels, Boats have props, Aircraft have wings... 

– The specialized classes are said to inherit the 
methods and instance variables of the general class. 
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Derived Classes 

• There is often a natural hierarchy when 
designing certain classes. 
 

• Example: 

– In a record-keeping program for the vehicles on a 
military base, there are automobiles and aircraft. 

– Automobiles can be divided into Cars and 
Motorcycles. 

– Aircraft can be divided into Planes and 
Helicopters. 
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Derived Classes 

• All vehicles have certain characteristics in common. 
– Vin number, color, number of operators, speed, 

number of passengers 
– The methods for setting and changing the vin, color, 

speed, number of passengers, and number of 
operators 
 

• Some vehicles have specialized characteristics. 
– Move 

• Aircraft move on the ground and can move in the air 
• Automobiles move on the ground 

– Creating move methods for these two different 
groups would be different. 

 

6 



Inheritance and OOP 

• Inheritance is an abstraction for  

– sharing similarities among classes (e.g. vin, color, 
speed), and 

– preserving their differences (e.g. how they move). 
 

• Inheritance allows us to group classes into 
families of related types (Vehicles), allowing 
for the sharing of common operations and 
data.  
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General Classes 

• A class called Vehicle can be defined that 
includes all Vehicles. 
 

• This class can then be used to define classes 
for Automobile and Aircraft. 
 

• The Automobile class can be used to define 
a Car class, and so forth. 
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A Vehicle Class Hierarchy 

Vehicle 

Automobile Aircraft 

Car Motorcycle Airplane Helicopter 

Reconnaissance  Fighter Bomber 
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The Vehicle Class 
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public class Vehicle { 

   private int vin; 

   private Color color; 

   private int numOperators; 

   private int numPassengers; 

   private int speed; 

    

   private static int serialNumber = 111111; 

 

   public Vehicle(){ /* code here */} 

   public Vehicle(Vehicle v){ /* code here */ } 

   public Vehicle(Color cc, int numOperators) {/*code here */} 

 

   // some accessors and mutators 

   public void changeColor(Color c){/* code here */} 

   public void setNumPassangers(int p){/* code here */} 

   public int getNumOperators(){ /* code here */ } 

   public int getVinNumber() { /* code here */ } 

   public String toString() { /* code here */ } 

   public boolean equals(Vehicle other) { /* code here */} 

   public void accelerate() { /* code here */ } 

   public void decelerate() { /* code here */ } 

   public int getSpeed() { /* code here */ } 
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Derived Classes 
• Since an Automobile “is a” Vehicle, it is defined as 

a derived class of the class Vehicle. 
 

– A derived class is defined by adding instance variables 
and/or methods to an existing class. 

– The class that the derived class is built upon is called 
the base class. 

– The phrase extends BaseClass must be added 
to the derived class definition. 

 

public class Automobile extends Vehicle 
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public class Automobile extends Vehicle { 

 

   // instance variables local to the derived class 

   private String make; 

   private String model; 

   private boolean locked; 

 

   public Automobile() {/* code here */} 

   public Automobile(String make, String model) {/* code here */} 

 

   // methods that are local to the derived class 

   public void isLocked() {/* code here */} 

   public void lock() {/* code here */} 

   public void unlock() {/* code here */} 

 

   public String toString() {/* code here */} 

   public boolean equals(Automobile other) {/* code here */} 

} 

Automobile Class 
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Derived Class 

• A derived class is also called a subclass. 

• The class derived from is called a base class or 
superclass. 

• The derived class inherits all of the following 
from the base class. 
– public methods 

– public and private instance variables 

– public and private static variables 

• The derived class can add more instance 
variables, static variables, and/or methods. 
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Inherited Members 

• Definitions for the inherited variables and 
methods do not appear in the derived class. 
 

– The code is reused without having to explicitly 
copy it, unless the creator of the derived class 
redefines one or more of the base class methods. 
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public static void main(String[] args){ 

   Automobile auto = new Automobile("GMC","Hummer"); 

 

   // get the vin number of the auto (method of Vehicle) 

   System.out.println(“Auto vin: " + auto.getVinNumber()); 

 

   // change the color of the auto (method of Vehicle) 

   auto.changeColor(Color.DARK_GRAY); 

 

   // lock the auto(method of Automobile) 

   auto.lock(); 

 

   // lock the auto (method of Vehicle) 

   auto.accelerate(); 

 

   // print the auto (method of ?) 

   System.out.println(auto); 

} 

Using Automobile & Inheritance 
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Overriding a Method Definition 

• A derived class can change or override an inherited 
method. 
 

• In order to override an inherited method, a new 
method definition is placed in the derived class 
definition. 
 

• For example, let’s say automobiles decelerate and 
accelerate at a rate of 5 mph.   
– It would make sense to override Vehicle’s accelerate 

and decelerate methods by defining Automobile’s own 
accelerate and decelerate methods. 
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Now, this code 
   

 Automobile hummer = new Automobile( ); 

 hummer.accelerate( ); 

 

invokes the overridden accelerate() method in the Automobile class rather than 
the accelerate() method in the Vehicle class. 

 
To override a method in the derived class, the overriding method must have the same 

method signature as the base class method. 

public class Vehicle { 

   // other class code ...    

   public void accelerate() { ++speed; } 

   public void decelerate() { --speed; } 

} 

 

public class Automobile extends Vehicle { 

   // other class code ...    

   public void accelerate() { speed += 5; } 

   public void decelerate() { speed += 5; } 

} 

Overriding Example 
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Overriding Versus Overloading 

• Do not confuse overriding a method in a derived 
class with overloading a method name. 
 

– When a method in a derived class has the same 
signature as the method in the base class, that is 
overriding. 
 

– When a method in a derived class or the same class 
has a different signature from the method in the base 
class or the same class, that is overloading. 
 

– Note that when the derived class overrides or 
overloads the original method, it still inherits the 
original method from the base class as well (we’ll see 
this later). 
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The final Modifier 

• If the modifier final is placed before the 
definition of a method, then that method may 
not be overridden in a derived class. 

 

• It the modifier final is placed before the 
definition of a class, then that class may not 
be used as a base class from which to derive 
other classes. 
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Pitfall: Use of Private Instance Variables from a 
Base Class 

• An instance variable that is private in a base class 
is not accessible by name in a method definition of 
a derived class. 
– An object of the Automobile class cannot access 

the private instance variable speed by name, even 
though it is inherited from the Vehicle base class. 
 

• Instead, a private instance variable of the base 
class can only be accessed by the public accessor 
and mutator methods defined in that class. 
– An object of the Automobile class can use the 
getSpeed or accelerate/decelerate 
methods to access speed. 
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Encapsulation and Inheritance Pitfall:  
 Use of Private Instance Variables from a Base Class 

• If private instance variables of a class were 
accessible in method definitions of a derived 
class,  
– then anytime someone wanted to access a private 

instance variable, they would only need to create 
a derived class, and access the variables in a 
method of that class. 
 

• This would allow private instance variables to 
be changed by mistake or in inappropriate 
ways. 
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Pitfall:  Private Methods Are Effectively Not 
Inherited 

• The private methods of the base class are like 
private variables in terms of not being directly 
available. 
 

• A private method is completely unavailable, unless 
invoked indirectly. 
– This is possible only if an object of a derived class 

invokes a public method of the base class that 
happens to invoke the private method. 
 

• This should not be a problem because private 
methods should only be used as helper methods. 
– If a method is not just a helper method, then it 

should be public. 
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