
CMSC 202

Generics II

1

Generic Sorting

We can now implement sorting functions that can be used for any
class (that implements Comparable). The familiar insertion sort
is shown below.

public static <T extends Comparable<T>> void insertionSort(T[] array) {

 for (int i = 1; i < array.length; i++) {
 int j = i;
 T item = array[i];
 while ((j > 0) && (array[j - 1].compareTo(item) > 0)) {
 array[j] = array[j - 1];
 j--;
 }
 array[j] = item;
 }
}

2

Generics and Hierarchies

 What if we want a somewhat specialized container that
assumes the objects it holds are part of a hierarchy so
that the container code can assume the existence of a
particular method?

 Let’s look at animals, dogs, and cats.

class Animal { public void speak(){...} ... }

class Dog extends Animal {...}

class Cat extends Animal {...}

We would like to create a container named Zoo to hold some
animals that speak.

3

Zoo<T>

 If we define the Zoo like this

 public class Zoo< T >

we’ll get a compiler error where the speak()
method is called. Not all classes provide a
method called speak(). Only Animal and
classes that extend it provide a speak().

The solution is to place a bounds on T. The Zoo
can only contain Animal references or any type
that inherits from Animal.

 public class Zoo< T extends Animal >

The phrase T extends Animal means “Animal or any subtype of
Animal.”

 4

Generics and Hierarchy

For example, suppose we revisit the Animals.

Each animal has a weight and a name. Let’s say two Dogs (or two
Cats) are equal if they have the same name and weight.

class Animal { private String name; private int weight; ...}

class Dog extends Animal implements Comparable<Dog>{ ... }

class Cat extends Animal implements Comparable<Cat>{ ... }

Since Dog implements Comparable<Dog>, it’s clear you can
compare Dogs with Dogs, but not with Cats.

So, we can use our insertionSort() method with Dogs or with Cats.

5

Sorting Dogs

public void main(String[] args) {

 Dog[] dogs = new Dog[42];

 // Put some dogs in the array
 . . .

 // Use insertion sort to sort dogs
 MyClass.insertionSort(dogs);
}

6

Generics and Hierarchies
What happens if we want to sort a class in an inheritance

hierarchy, and some ancestor of the class implements
Comparable, but not the class itself?

But suppose we wanted to compare all Animals using only
their weight? The class definitions would look something like
this.

class Animal implements Comparable<Animal> { ...}

class Dog extends Animal { ... }

class Cat extends Animal { ... }

Since Animal implements comparable, any two Animals can be
compared (albeit only by weight).

The problem is now that we can’t use insertionSort to sort an
array of Dogs because Dog doesn’t explicitly implement
Comparable (it’s inherited from Animal).

 7

New insertionSort

The solution is to use a “wildcard” when defining insertionSort.

? super T is read as “T or any supertype of T”. Now, because
Dog extends Animal which implements Comparable,
insertionSort can be used with an array of Dogs as before.

public static <T extends Comparable<? super T>> void insertionSort(T[] array) {

 for (int i = 1; i < array.length; i++){
 int j = i;
 T item = array[i];
 while ((j > 0) && (array[j-1].compareTo(item) > 0)){
 array[j] = array[j-1];
 j--;
 }
 array[j] = item;
 }
}

8

Pitfall: A Generic Class Cannot Be an Exception

Class

 It is not permitted to create a generic class with
Exception, Error, Throwable, or any
descendent class of Throwable.

 A generic class cannot be created whose objects
are throwable.

 public class GEx<T> extends Exception

 The above example will generate a compiler error.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

9

Tip: Generic Interfaces

 An interface can have one or more type

parameters.

 The details and notation are the same as they

are for classes with type parameters.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10

Generic Methods

 When a generic class is defined, the type parameter can
be used in the definitions of the methods for that generic
class.

 In addition, a generic method can be defined that has its
own type parameter that is not the type parameter of any
class.

 A generic method can be a member of an ordinary class or
a member of a generic class that has some other type
parameter.

 The type parameter of a generic method is local to that
method, not to the class.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11

Generic Methods

 The type parameter must be placed (in angle brackets)
after all the modifiers, and before the return type.

public class Utility {

...

 public static <T> T getMidPoint(T[] array){

 return array[array.length / 2];

 }

 public static <T> T getFirst(T[] a){

 return a[0];

 }

 ...

}

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

12

Generic Methods

 When one of these generic methods is invoked,

the method name is prefaced with the type to be

plugged in, enclosed in angular brackets.

String s =

 Utility.<String>getMidPoint(arrayOfStrings);

double first =

 Utility.<Double>getFirst(arrayOfDoubles);

13

Inheritance with Generic Classes

 A generic class can be defined as a derived class of an
ordinary class or of another generic class.

 As in ordinary classes, an object of the subclass type would also
be of the superclass type.

 Given two classes A and B, and a generic class G, there
is no relationship between G<A> and G.

 This is true regardless of the relationship between class A and B,
e.g. if class B is a subclass of class A.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

14

The Commonly Used Generic Ordered
Pair Class (1 of 4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

15

A Generic Ordered Pair Class (2)

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

16

A Generic Ordered Pair Class (3)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

17

A Generic Ordered Pair Class (4)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

18

A Derived Generic Class (1 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

In this example, UnorderedPair overrides the equals() method that was

inherited from Pair.

19

A Derived Generic Class (2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

20

Using UnorderedPair (1 of 2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

21

Using UnorderedPair (2)

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

22

