
CMSC 202

Generics I

1

2

Generalized Code

 One goal of OOP is to provide the ability to
write reusable, generalized code.

 Polymorphic code using base classes is
general, but restricted to a single class
hierarchy.

 Generics is a more powerful means of writing
generalized code that can be used by any
class in any hierarchy represented by the type
parameter.

3

Containers

 Almost all programs require that objects be stored

somewhere while they are being used.

 A container is a class used to hold objects in some

meaningful arrangement.

 Generics provide the ability to write generalized

containers that can hold any kind of object.

 Yes, arrays can hold any kind of object, but a

container is more flexible.

 Different types of containers can arrange the

objects they hold in different ways.

4

Simple Container

The container class below models a SpecificBox used to
hold a String.

public class SpecificBox {
 private String item;

 public SpecificBox(String s){
 item = s;
 }

 public String getItem(){
 return item;
 }
}

 This SpecificBox is limited to only holding String
objects. It is very specific in its uses.

5

A More General Box

By using the Java Object class and inheritance, we can use
our Box to hold any kind of Object. (Why?)

public class ObjectBox {
 private Object item;

 public ObjectBox(Object o){
 item = o;
 }

 public Object getObject(){
 return item;
 }
}

 But this approach can lead to some interesting code
and runtime exceptions.

6

Object Box Example

public static void main(String[] args){
 ObjectBox box1 = new ObjectBox(new String("HI"));

 // downcast a String to an Integer?
 Integer i = (Integer)box1.getObject();
}

 Object is the base class of all classes in Java.

 Using an Object reference variable can lead to a number of
runtime exceptions.

 Special case code would have to be made for every type of
derived object that was put in the ObjectBox.

Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot be

cast to java.lang.Integer at Generics.ObjectBox.main(ObjectBox.java:17)

7

One Type per Container

 Using generics, we specify the one type of

object that our container holds and use the

compiler to enforce that specification.

 The type of object held in our container is

specified by a type parameter.

8

Class Definition with a Type Parameter

 A class that is defined with a parameter for a type is
called a generic class or a parameterized class.

 The type parameter is included in angular brackets
after the class name in the class definition
heading.

 Any non-keyword identifier can be used for the
type parameter. But by convention, the parameter
starts with an uppercase letter.

 The type parameter can be used like other types
used in the definition of a class.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

9

Generic Box

 A class definition with a type parameter is stored in a file

and compiled just like any other class.

 Once a parameterized class is compiled, it can be used

like any other class.

 However, the class type plugged in for the type parameter must

be specified before it can be used in a program.

public class GenericBox<Type> {
 private Type item;
 public GenericBox(Type item){
 this.item = item;
 }
 public Type getItem(){
 return item;
 }
 public void setItem(Type newItem){
 this.item = newItem;
 }
}

10

Generic Box Example

public static void main(String[] args) {

 GenericBox<String> box1 = new GenericBox<String>("Charlie Sheen");
 GenericBox<Integer> box2 = new GenericBox<Integer>(new Integer(2));

 String thingInTheContainer = box1.getItem(); // Works fine

 // Compiler errors when we try to use Integers with a String box

 Integer thingInTheContatiner2 = box1.getItem();
 box1.setItem(new Integer(2));
}

 Declaring a reference variable to a generic Object
requires you to specify the Type.

 The Type that is specified provides syntax checking to
make sure that you are not trying to insert an Integer
into a box that was meant for Strings.

11

A Generic Constructor Name Has No Type Parameter

 Although the class name in a parameterized class definition
has a type parameter attached, the type parameter is not used
in the heading of the constructor definition.

public GenericBox()

 A constructor can use the type parameter as the type for a
parameter of the constructor. But in this case, the angle
brackets are not used.

public GenericBox(T item);

 However, when a generic class is instantiated, the angle
brackets are used.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

 GenericBox<String> box1 =

 new GenericBox<String>(“Charlie Sheen”);

12

A Primitive Type Cannot be Plugged in for a Type

Parameter

 The type plugged in for a type parameter must

always be a reference type.

 It cannot be a primitive type such as int, double,

or char.

 However, now that Java has automatic boxing for

wrapper classes, this is not a big restriction.

 Note: Reference types can include arrays.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

13

Pitfall: A Type Parameter Cannot Be Used

Everywhere a Type Name Can Be Used

 Within the definition of a parameterized class
definition, there are places in the generic class’
methods where an ordinary class name would be
allowed, but a type parameter is not allowed.

 In particular, the type parameter cannot be used in
simple expressions using “new” to create a new
object.

 For instance, the type parameter cannot be used
as a constructor name or like a constructor.

T object = new T();

T[] a = new T[10];

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

14

Pitfall: An Instantiation of a Generic Class Cannot be

an Array Base Type

 Arrays such as the following are illegal.

 Although this is a reasonable thing to want to do, it is

not allowed given the way that Java implements

generic classes.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

GenericBox<Integer>[] array = new GenericBox<Integer>[5];

ArrayList<GenericBox<Integer>> arraylist;
arraylist = new ArrayList<GenericBox<Integer>>(5);

• Use an ArrayList instead.

15

A Class Definition Can Have More Than One Type

Parameter

 A generic class definition can have any

number of type parameters.

 Multiple type parameters are listed in angle

brackets just as in the single type parameter case.

 The type parameters are separated by commas.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

16

Multi-Type Generic Objects
public class MultiType<Type1, Type2> {

 private Type1 item1;
 private Type2 item2;

 public MultiType(Type1 i1, Type2 i2) {
 item1 = i1;
 item2 = i2;
 }

 public static void main(String[] args) {
 MultiType<String, Integer> container1 =
 new MultiType<String, Integer>("Johnny", 5);
 MultiType<String, String> container2 =
 new MultiType<String, String>("Johnny", "Five");
 }
}

 All the rules about parameterized types are still enforced with
generic classes that have multiple parameterized types.

17

Invoking Methods of Typeless Variables

 What interface does Type provide?

 Java cannot know what the interface of Type is during compile time.
This means we cannot invoke specific methods on variables of type
Type.

 Variables of Type are limited to the interface of Object because all
classes are derived from object.

 All objects can invoke the toString() method even though they did
not define it in the class.

public class GenericBox<Type> {

 private T item;

 public void doSomething(){
 item.function();
 SomeType tmp = item.publicVariable;
 System.out.println("Item: " + item);
 }

18

Ordering Generic Boxes

 Suppose we want to implement compareTo() for GenericBox.

 A syntax error will appear when we attempt to invoke the compareTo()
method of an object of type Type.

 Java can only assume that Type is an Object!!!

public class GenericBox<Type> implements Comparable<GenericBox<Type>> {

 private Type item;

 public GenericBox(Type item) {
 this.item = item;
 }

 public int compareTo(GenericBox<Type> other){
 return this.item.compareTo(other.item);
 }
 public static void main(String[] args){
 GenericBox<String> box1 = new GenericBox<String>("Derp");
 GenericBox<String> box2 = new GenericBox<String>("Herp");
 box1.compareTo(box2);
 }
}

19

Bounds for Type Parameters

 Sometimes it makes sense to restrict the
possible types that can be plugged in for a
type parameter T.

 For instance, to ensure that only classes that
implement the Comparable interface are plugged
in for T, define a class as follows.

public class RClass<T extends Comparable<T>>

 "extends Comparable<T>" serves as a bound on the type
parameter T.

 Any attempt to plug in a type for T which does not implement the
Comparable interface will result in a compiler error message.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

20

Bounding the GenericBox Example

public class GenericBox<Type extends Comparable<Type>> implements

 Comparable<GenericBox<Type>> {
 private Type item;
 public GenericBox(Type item) {
 this.item = item;
 }

 public int compareTo(GenericBox<Type> other){
 return this.item.compareTo(other.item);
 }

 public static void main(String[] args){
 GenericBox<String> box1 = new GenericBox<String>("Derp");
 GenericBox<String> box2 = new GenericBox<String> ("Herp");
 box1.compareTo(box2);
 }
}

 We have to bound Type to extend Comparable<Type> so that in GenericBox's
compareTo() method we are able to invoke compareTo() on item.

 Java will require an object in this container to be a descendant of Comparable.
(implementing comparable).

21

Bounds for Type Parameters

 A bound on a type may be a class name.

 Then, only descendent classes of the bounding class
may be plugged in for the type parameters.

 public class ExClass<T extends Class1>

 A bounds expression may contain multiple interfaces and
up to one class.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

