
CMSC 202

Exceptions II

11/2010 2

Methods may fail for multiple

reasons

public void withdraw(double amount){
 if(amount < 0)
 throw new Exception("Amount Negative");
 if(amount > balance)
 throw new IllegalArgumentException("Overdraft of" + amount);
 balance -= amount;
}

 Withdraw can fail in multiple ways. Each is its own exceptional event and should be
handled differently.

 Overdraft's usually incur a penalty against your account until you have move
money around accordingly.

11/2010 3

Multiple catch Blocks

 A try block can call a method that potentially throws any

number of exception values, and they can be of differing

types

 In any one execution of a try block, at most one exception can

be thrown (since a throw statement ends the execution of the
try block)

 However, different types of exception values can be thrown on
different executions of the try block

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 4

Multiple catch Blocks

 Each catch block can only catch values of the exception

class type given in the catch block heading

 Different types of exceptions can be caught by placing
more than one catch block after a try block

 Any number of catch blocks can be included, but they must be

placed in the correct order

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 5

Multiple catch Blocks

public void main(String[] args){
 BankAccount account = new BankAccount(100.00);
 Scanner input = new Scanner(System.in);

 System.out.print("Enter deposit amount: ");
 int amt = input.nextInt();
 try{
 account.withdraw(amt);

 }
 catch (IllegalArgumentException e){
 // code that "handles" the overdraft exception
 }
 catch (Exception e){
 // code that "handles" the negative exception
 }
}

11/2010 6

 Catch the More Specific Exception First

 When catching multiple exceptions, the order
of the catch blocks is important

 When an exception is thrown in a try block, the
catch blocks are examined in order

 The first one that matches the type of the
exception thrown is the one that is executed

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 7

 Catch the More Specific Exception First

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

public void main(String[] args){
 BankAccount account = new BankAccount(100.00);
 Scanner input = new Scanner(System.in);

 System.out.print("Enter withdraw amount: ");
 int amt = input.nextInt();
 try{
 account.withdraw(amt);

 }
 catch (Exception e){ // problems
 // code that "handles" the negative exception
 }
 catch (IllegalArgumentException e){
 // code that "handles" the overdraft exception
 }
}

11/2010 8

Catch the More Specific Exception First

 Because a DepositNegativeException and

DepositTooSmallException are types of

Exception, all exceptions will be caught by the first

catch block before ever reaching the second or third

block

 The catch blocks for DepositNegativeException

and DepositTooSmallException will never be

used!

 For the correct ordering, simply put the catch block for

Exception last.

11/2010 9

Defining Exception Classes

 A throw statement can throw an exception object of any

exception class

 Instead of using a predefined class, exception classes

can be programmer-defined

 These can be tailored to carry the precise kinds of information
needed in the catch block

 A different type of exception can be defined to identify each

different exceptional situation

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 10

Defining Exception Classes
 Every exception class to be defined must be a derived class of

some already defined exception class
 It can be a derived class of any exception class in the standard

Java libraries, or of any programmer defined exception class

 Constructors are the most important members to define in an
exception class
 They must behave appropriately with respect to the variables

and methods inherited from the base class

 Often, there are no other members, except those inherited from
the base class

 The following exception class performs these basic tasks only

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 11

Exception Object Characteristics

 The two most important things about an
exception object are its type (exception class)
and the message it carries

 The message is sent along with the exception
object as an instance variable

 This message can be recovered with the accessor
method getMessage, so that the catch block can
use the message

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 12

Programmer-Defined Exception Class Guidelines

 Exception classes may be programmer-defined, but every such class
must be a derived class of an already existing exception class

 The class Exception can be used as the base class, unless another
exception class would be more suitable

 At least two constructors should be defined, sometimes more

 The exception class should allow for the fact that the method
getMessage is inherited

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 13

Preserve getMessage

 For all predefined exception classes, getMessage returns the
string that is passed to its constructor as an argument

 Or it will return a default string if no argument is used with the
constructor

 This behavior must be preserved in all programmer-defined
exception class

 A constructor must be included having a string parameter whose
body begins with a call to super

 The call to super must use the parameter as its argument

 A no-argument constructor must also be included whose body
begins with a call to super

 This call to super must use a default string as its argument

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 14

A Programmer-Defined Exception Class

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 15

Tip: An Exception Class Can Carry a

Message of Any Type: double Message

 An exception class constructor can be defined that
takes an argument of another type
 It would stores its value in an instance variable

 It would need to define accessor methods for this
instance variable

 A programmer defined exception class may include
any information that might be helpful to the recipient

11/2010 16

An Exception Class with an double Message

public class InvalidAmountException extends Exception {

 private double amount;

 public InvalidAmountException(double amount){

 super("Invalid Amount Exception: $" + amount);

 this.amount = amount;

 }

 public double getAmount(){

 return amount;

 }

}

11/2010 17

Declaring Exceptions in a throws Clause

 If a method can throw an exception but does not catch it,
it must provide a warning
 This warning is called a throws clause

 The process of including an exception class in a throws clause is
called declaring the exception

throws AnException //throws clause

 public int deposit(int amt) throws DepositNegativeException,

 DepositTooSmallException

 {

 if (amt < 0)

 throw new DepositNegativeException();

 if (amt < minDeposit)

 throw new DepositTooSmallException();

 balance += deposit;

 }

Copyright © 2008 Pearson Addison-Wesley.

All rights reserved

11/2010 18

Checked and Unchecked Exceptions

 Exceptions that are subject to the catch or declare rule are
called checked exceptions

 The compiler checks to see if they are accounted for with
either a catch block or a throws clause

 The classes Throwable, Exception, and all
descendants of the class Exception are checked
exceptions

 All other exceptions are unchecked exceptions

 The class Error and all its descendant classes are called
error classes

 Error classes are not subject to the Catch or Declare Rule

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 19

Exceptions to the Catch or Declare Rule

 Checked exceptions must follow the Catch or Declare
Rule

 Programs in which these exceptions can be thrown will not
compile until they are handled properly

 Unchecked exceptions are exempt from the Catch or
Declare Rule

 Programs in which these exceptions are thrown simply need to
be corrected, as they result from some sort of error

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 20

Hierarchy of Throwable Objects

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 21

Runtime Exceptions

 Runtime exceptions are

 Unchecked

 Frequently thrown by Java automatically when

there is a bug in your program

 Referencing a null pointer

 Array index out of bounds

 May also be thrown and/or propagated by your

program for run-time issues

11/2010 22

Constructors and Exceptions

Up until now we’ve had no way to recover if a bad parameter was

passed to a constructor. We usually just exited the program with

System.exit(). A better way is to throw an exception

public BankAccount(double balance) throws InvalidAmountException{

 if(balance < 0)

 throw new InvalidAmountException(balance);

 this.balance = balance;

}

 This code will not compile until you satisfy the Catch or Declare Rule.
 We can throw exceptions in constructors when class invariants are not maintained
during construction.

11/2010 23

trying constructors
public static void main(String[] args){

 BankAccount account;

 try{

 Scanner input = new Scanner(System.in);

 // get amount to deposit

 System.out.println("Enter a Starting Balance: ");

 double amt = input.nextDouble();

 account = new BankAccount(amt);

 }

 catch(InvalidAmountException e){

 System.err.println(e.getMessage());

 }

 catch(Exception e){

 System.err.println(e.getMessage());

 }

}

 Here we try to construct a BankAccount Object. Anytime we create an account
with a amt < 0 and InvalidAmountException is thrown and delt with appropriately.

11/2010 24

The finally Block

 The finally block contains code to be executed whether or not an
exception is thrown in a try block
 If it is used, a finally block is placed after a try block and its

following catch blocks

try

{ . . . }

catch(ExceptionClass1 e)

{ . . . }

 . . .

catch(ExceptionClassN e)

{ . . . }

finally

{

 CodeToBeExecutedInAllCases

}

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

11/2010 25

The finally Block

 If the try-catch-finally blocks are inside a method definition,
there are three possibilities when the code is run:

1. The try block runs to the end, no exception is thrown, and the finally
block is executed

2. An exception is thrown in the try block, caught in one of the catch
blocks, and the finally block is executed

3. An exception is thrown in the try block, there is no matching catch
block in the method, the finally block is executed, and then the
method invocation ends and the exception object is thrown to the
enclosing method

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

11/2010 26

When to use a finally block

 The finally block should contain code that you

always want to run whether or not an

exception occurred.

 Generally the finally block contains code to

release resources other than memory

 Close files

 Close internet connection

 Clear the screen

