
Composition

CMSC 202

Code Reuse

• Effective software development relies on
reusing existing code.

• Code reuse must be more than just copying
code and changing it which is often the case
with procedural languages like C.

• The goal with OOP languages is to reuse
classes without changing the code within the
class — one OOP technique for code reuse is
known as composition.

2

A Simple Database

• Your favorite boss wishes to implement a simple database
of Motorcycles they currently have on the dealership’s lot.
Their application has only a few requirements...

• They would like record the VIN, Color, Date of Arrival, and
Date of Sale each Motorcycle that has entered and left the
dealership. A report is required that prints all information
for each Motorcycle. Motorcycles must be comparable to
avoid duplicate entries in the database. For ease of data
entry, it must be possible to make a copy of an existing
Motorcycle.

• Your contribution to this project is to design and implement
a class named Motorcycle that will represent a single
Motorcycle.

3

Designing a Motorcycle Class:
 Behaviors/Services

• After reading the problem description, the
following behaviors/services have been identified
for the Motorcycle class.
– Create a Motorcycle with a VIN, color, date of arrival,

and date of sale.

– Compare two Motorcycle objects to determine if they
are identical.

– Format a string containing all Motorcycle attributes.

– Create a new Motorcycle which is the copy of an
existing Motorcycle.

4

Designing a Motorcycle Class:
 Instance Variables

• To support the required services, a simple Motorcycle
class could contain instance variables representing each of
the Motorcycle’s required class members.

• These instance variables would all be class types: name of
type String, and two dates of type Date.

• As a first line of defense for privacy and to provide proper
encapsulation, each of the instance variables would be
declared private.

public class Motorcycle {

 private String vin;

 private String color;

 private Date arrived; // Date stores Month (String), Day Year (ints)

 private Date sold; // null means still on the lot

 // ...

}

5

Designing a Motorcycle Class:
Constraints

• In order to exist, a Motorcycle must have (at least) a
VIN, color, and a Date of arrival.
– Therefore, it would make no sense to have a no-argument
Motorcycle class constructor.

• A Motorcycle that has not been sold does not yet have
a date of sale.
– Therefore, the Motorcycle class constructor will need

to be able to deal with a null value for date of sale (and/or
provide a 3 argument constructor).

• A Motorcycle that has been sold must have had an
arrival date that preceded its date of sale.
– Therefore, when both dates are provided to the

constructor, they will need to be checked for validity.

6

Designing a Motorcycle Class:
 The Class Invariant

• A statement that is always true for every object of the class
is called a class invariant.
– A class invariant can help to define a class in a consistent and

organized way

• For the Motorcycle class, the following should always be
true
– An object of the class Motorcycle has a VIN, color, a date of

arrival (which are not null values), and if the object has a date
of sale, then the date of sale is equal to or later than the date of
arrival.

• Checking the Motorcycle class confirms that this is true
of every object created by a constructor, and all the other
methods (e.g., the private method isValidState)
preserve the truth of this statement.

7

Class Invariant Summary

• The class invariant is stated as part of the class
documentation.

• Error checking in the constructor(s) and
setters/mutators insure that the class
invariant is not violated.

• Methods of the class which do not change the
class’s state may assume the class invariant
holds.

8

A Motorcycle Class Constructor
/**

 * Class Invariance is that a Motorcycle must have a non-null vin, non-null

 * Color, and a date of arrival that precedes its date of sale (if set).

 *

 * @param vin a non-null string to uniquely identify the Motorcycle

 * @param color a non-null string representing the color

 * @param arrived a non-null date of arrival

 * @param sale a date (this may be null indicating the Motorcycle hasn't yet

 * been sold)

 */

public Motorcycle(String vin, String color, Date arrived, Date sold) {

 // checks the class invariant

 if (!isValidState(vin, color, arrived, sold)) {

 // program exits if the motorcycle would be created illegally

 System.err.println("Invalid State for Motorcycle Construction");

 System.exit(0);

 }

 this.vin = vin;

 this.color = color;

 this.arrived = arrived;

 this.sold = sold;

}
9

Checking the Class Invariant

• Which part of the invariance are we
validating?

private boolean isValidState(String vin, String color,

 Date arrived, Date sold) {

 return vin != null && !vin.equals("") &&

 color != null && !color.equals("") &&

 arrived != null &&

 (sold == null || arrived.before(sold));

}

10

Composition

• Note that the Motorcycle class contains two class type
instance variables (String and Dates).

• The use of classes as instance variables is a design
method known as aggregation or composition.

• Composition is a fundamental way to reuse code, but
there are coding considerations when composition is
used.

private String vin;

private String color;

private Date arrived;

private Date sold;

11

Composition Considerations

• With composition, Motorcycle becomes a user
of the Date and String classes.

• The Motorcycle class has no special privileges
with respect to Date or String.

• The Motorcycle class should delegate
responsibility to the Date and String classes
whenever possible.

– We let each class “do the work” of that object.

12

Designing a Motorcycle’s Class:
 The equals Method

• The definition of equals for the class Motorcycle
includes an invocation of equals for the class
String, and an invocation of the method equals
for the class Date.

• The Motorcycle class passes responsibility for
determining equality to the String and Date classes
invoking their equals methods.
– This is an important example of code reuse arising from

the use of composition to implement Motorcycle.

• Java determines which equals method is being
invoked from the type of its calling object.

13

Designing a Motorcycle Class:
 The equals Method

public boolean equals(Motorcycle other) {

 return vin.equals(other.vin) &&

 color.equals(other.color) &&

 arrived.equals(other.arrived) &&

 sold.equals(other.sold);

}

These call the equals
method defined in

the String class

These call the equals
method defined in

the Date class

Consider our Class Invariant
• The date of sale could be null.
• Using the equals method could generate a null pointer exception.
• Instead of storing a null value in sold…

• We could initialize it with a unique value indicating they are still on
dealership’s lot (e.g. a date way in the future), or

• We could add the code first check and see if values are null and then
handle accordingly 14

Warning — Potential Statement of Mass Destruction!

Designing a Motorcycle Class:
 The toString Method

• The Motorcycle class toString method includes
invocations of the Date class toString method.

• Again, an example of code reuse and delegation of
responsibility due to composition.

public String toString() {

 String state = "";

 state += "Vin: " + vin + "\n";

 state += "Color: " + color + "\n";

 state += "Arrived: " + arrived + "\n";

 state += (sold != null) ? "Sold: " + sold : "Not Sold" + "\n";

 return state;

}

Each (non-primitive) instance
variable calls toString(),

effectively delegating the
work to that class

15

Designing a Motorcycle Class:
 Making a Copy

• Making a copy of an object requires a special
method called a copy constructor.

• A copy constructor is a constructor with a
single argument of the same type as the class.

• The copy constructor should create an object
that is a separate, independent object, but
with the instance variables set so that it is an
exact copy of the argument object.

16

Copy Constructor for a Class with
Primitive Type Instance Variables

// a class that does not use composition can

// simply copy the values of the primitive instance

// variables

public Date(Date date) {

 // Not a real date object parameter

 if (date == null) {

 // we'll handle errors differently later

 System.out.println("Fatal Error!");

 System.exit(0);

 }

 // just copy the primitive variables using assignment

 // month is a String which is NOT primitive, but that's ok

 month = date.month;

 day = date.day;

 year = date.year;

}
17

Copy Constructor for a Class Using
Composition

• Because of composition, the technique used with
Date will not work correctly with Motorcycle in its
current form…

public Motorcycle(Motorcycle other) {

 if(other == null) {

 System.out.println("Fatal error!");

 System.exit(0);

 }

 vin = other.vin; // ok

 color = other.vin; // ok

 arrived = other.arrived; // dangerous

 sold = other.sold; // dangerous

}

This code would not create an independent
copy of the original object. Why not? 18

Copy Constructor for a Class with
 Class Type Instance Variables

• The actual copy constructor for the Motorcycle class
needs to be made “safe.”

• Should create completely new and independent copies of
arrived and sold, and therefore, a completely new and
independent copy of the original Motorcycle object

• For example:

• Note that in order to define a correct copy constructor for a
class that uses composition, copy constructors must already
be defined for the instance variables classes (e.g. Date).

arrived = new Date(other.arrived);

19

Copy Constructor for a Class
 Using Composition

• Why do we not have to invoke a copy constructor with vin and
color?
– Strings are immutable objects.

• Why is it necessary to check to see if other == null ?
– A null pointer exception will occur if other is not an instantiated

Motorcycle object.

public Motorcycle(Motorcycle other) {

 if(other == null) {

 System.out.println("Fatal error!");

 System.exit(0);

 }

 vin = other.vin; // ok

 color = other.vin; // ok

 arrived = new Date(other.arrived); // ok

 sold = new Date(other.sold); // ok

}

20

Using and Misusing References

• When writing a program, it is very important
to insure that private instance variables
remain truly private.

• For a primitive type instance variable, just
adding the private modifier to its
declaration should insure that there will be no
privacy leaks.

• For a class type instance variable, adding the
private modifier alone is not sufficient.

21

Pitfall: Privacy Leaks

• The previously illustrated examples from the
Motorcycle class show how an incorrect definition of a
copy constructor can result in a privacy leak.

• A similar problem can occur with incorrectly defined
mutator or accessor methods.

22

public Date getArrivalDate() {

 return arrived;

}

public Date getArrivalDate() {

 return new Date(arrived);

}

Dangerou
s

Safe

Composition with Arrays

• Just as a class type can be used as an instance
variable, arrays can also be used as instance
variables.

• We can define an array with a primitive base
type.

• Or, an array with a class base type.

23

private double[] grades;

private Date[] dates;

Privacy Leaks with
Array Instance Variables

• If an accessor method is provided for the array,
special care must be taken just as when an
accessor returns a reference to any private
object.

• The example above will result in a privacy leak.
• Why?

24

public double[] getGrades() {

 return grades;

}

Privacy Leaks with
Array Instance Variables

• The previous accessor method would simply return a
reference to the array grades itself.

• Instead, an accessor method should return a reference
to a deep copy of the private array object.

• Below, grades is an array which is an instance
variable of the class containing the getGrades
method.

25

public double[] getGrades() {

 double[] temp = new double[grades.length];

 for (int i = 0; i < grades.length; i++) {

 temp[i] = grades[i];

 }

 return temp;

}

Privacy Leaks with
Array Instance Variables

• If a private instance variable is an array that
has a mutable class as its base type, then
copies must be made of each class object in
the array when the array is copied.

26

public Date[] getDates() {

 Date[] temp = new Date[dates.length];

 for (int i = 0; i < dates.length; i++) {

 temp[i] = new Date(dates[i]);

 }

 return temp;

}

But What If…

• …the user really wants to change the array
within the class?

– The user shouldn’t know that the class uses an
array.

– The array must represent some abstract data
element in the class (e.g. student grades).

– Provide a method that changes the abstract data
element without revealing the existence of an
array.

27

Remember…

28

Keep it secret,
keep it safe

